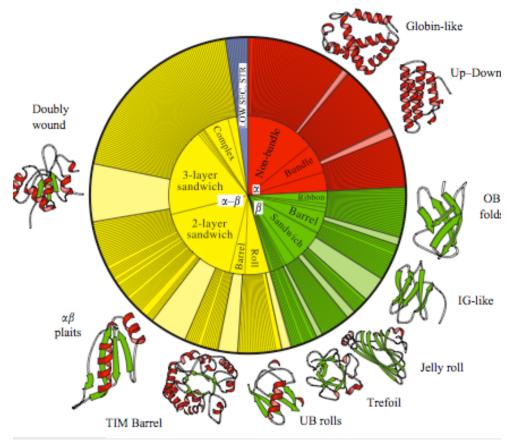
Lecture 15

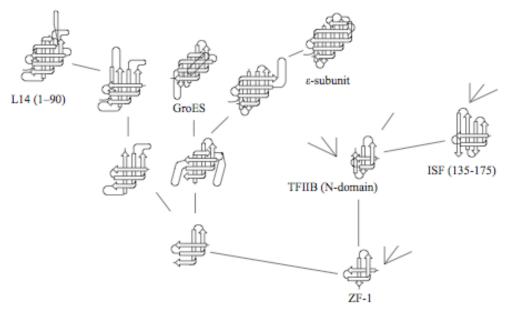

Protein-Fold Classification And "The 80% : 20% Law"

Early Thoughts

- Early 1970's
- Late 1970's
 - "Standard Design"
 - Simple Physical Restrictions exist

"The Intermediate Level" is the "folding pattern"

- Alpha and Beta region dependent
- Allows for classification



Classification

- Common Classifications:
 - Dali/FSSP
 - CATH (Class-Architecture-Topology-Homology)
 - SCOP (Structural Classification of Proteins)
- Common Classification Schemes
 - -Classes
 - -Architectures
 - -Topologies

Benefits of Classification

- Systematize Structure Studies
- Prediction of Structures
 - Example: β -Prisms

Protein Structure Evolution

• (1) Microscopic evolution of proteins

– Example: Llama hemoglobin

(2) Macroscopic evolution of proteins
– Not observed

80% : 20% Law

- 2 Driving questions
 - What is the physical reason for the simplicity and regularity of typical folding patterns?
 - Why are the same folding patterns shared by completely different proteins?

Regularity of Folding Patterns

- Stability Concerns
 - Simple question: Why the layered structure of globular proteins?
 - Stability due to hiding the Hydrophobic core
 - Irregular regions around the globule
 - Instability concerns
 - The mixed α - β layer instability
 - 4+ Layer instability
 - These states do occur from time to time, but are extremely rare
 - » Example: a chain consisting mostly of hydrophobic amino acids could pack into a large stable globule
 - » This case is very sequence specific

Sequence Specificity

- Sequences of primary structures of proteins
 - Globular protein sequences are "quasirandom"
 - Structural/Energy defects
 - Defect free structures

Folding Patterns

- Volume Covering Problem
 - Secondary Structures and Loops
 - Conditions:
 - » Loops do not intercross
 - » And loops connect anti-parallel
 - » Loop crossing can occur but are very sequence specific
 - The main point: Structures are similar due to constraints that cause "defect" folds to be highly sequence dependent
 - This can be summarized as: occurrence=exp(-E/KTc)

Summary

- (1) "Popular" folding patterns look so regular because the framework has physical restrictions (hydrophobic effects, etc..)
- (2) The number of "standard" stable folding patterns is not large
- (3) "Defects" aren't not allowed, just rare due to specificity of the sequences that generate them
- (4) "Multitude Principle"-> The more sequences fit the given architecture without disturbing its stability, the higher the occurrence of this architectures in native proteins