Lecture 10:
Brownian Motion, Random Walk & Diffusion
Side Chains of Amino Acids

Lecturer:

Prof. Brigita Urbanc (brigita@drexel.edu)

Stochastic Processes: Brownian Motion

→ micron size Brownian particles, suspended in solution, move as a result of impact from solvent atoms

Perrin's plot

→ stochastic variable: a sum of a large number of random steps

Brownian step

- → stochastic processes need to be treated in a statistical manner
- → Einstein's prediction in 1905 experimentally confirmed by Perrin in 1909

The Simplest Stochastic Process: Random Walk

- ⇔ random process consisting of a sequence of discrete steps of fixed length
- → random walk in 1D
- → W(k,n) probability that After n steps, the particle will be k steps away from the starting point
- → f # of forward steps
- → b # of backward steps
- \rightarrow f+b=n & f-b=k \Rightarrow f=(n+k)/2 & b=(n-k)/2

- → W(k,n) = n!/f! (n-f)! $2^{-n} = 2^{-n} n!/[(n+k)/2]!$ [(n-k)/2]! # of ways to choose a forward step out of total n steps
- → W(k,n) BINOMIAL distribution
- \rightarrow for $n \gg k \gg 1 \Rightarrow$ Gaussian distribution in k
- → Sterling's formula: $\ln n! \sim n \ln n n + \ln (2\pi n)^{1/2}$
- → expand to the lowest order in k/n

1

Gaussian distribution in k:

 $W(k,n) \approx (2/\pi n)^{1/2} \exp(-k^2/2n)$

Diffusion

- → translate the random walk Gaussian distribution into a physical situation: $k = x/x_0 & n = t/t_0$
- $\rightarrow x_0 \& t_0$ unit length & time step
 - ⇒ diffusion law in 1D probability density

$$W(x,t) = 1/(4\pi Dt)^{1/2} \exp(-x^2/4Dt)$$

[3D: W(r,t) =
$$1/(4\pi Dt)^{3/2} \exp(-r^2/4Dt)$$
]

- → D diffusion constant: D = $x_0^2/2t_0$
- → normalization at t>0: $\int_{-\infty}^{\infty} dx W(x,t) = 1$
- → normalization at $t \to 0$: $W(x,t) \to \delta(x)$
- \rightarrow $\langle x^2 \rangle = 2Dt$

Mean square displacement proportional to t^{1/2}!

Diffusion as a Random Walk (RW) Process

→ one RW step – time to dissipate the molecules's kinetic energy (dissipation due to friction):

m dv/dt =
$$F_{friction}$$
 = $-3\pi(2R)\eta v$ (Stokes's law)

 $t_{kinetic} = m/[3\pi(2R)\eta]$ (2R – diameter of a mol.)

- → t_{kinetic} kinetic time, in which a molecule forgets the prior direction of motion one step in a RW
- → diffusion time t_{diffusion}:
 - in $t_{kinetic}$ a molecule moves by $\Delta l = v t_{kinetic}$ in a random direction: $l_{n+1} = l_n \pm \Delta l \Rightarrow l_{n+1}^2 = l_n^2 + \Delta l^2$
 - in any time t, the displacement $l_t^2 = (t/t_{kinetic}) \Delta l^2$

→ the final expression for the displacement:

$$l_t^2 = t [k_B T/(\pi \eta R)]$$

characteristic time for diffusion is time needed to move by one molecular diameter 2R: $l_{i} = 2R$

$$t_{\text{diffusion}} = 4\pi R^3 \eta / (k_{\text{B}} T)$$

water viscosity $\eta = 0.01$ g cm⁻¹ s⁻¹ & k_BT ~ 600 cal mol⁻¹

$$t_{\text{diffusion}} = 0.4 \times 10^{-9} \text{ s } (2R/nm)^3$$

2R/nm - molecule's diameter in nanometers

20 standard, DNA encoded amino acid residues

DNA encoding of amino acids (redundancy)

Second base of codon U G C A UCU UAU UGU UUU U Phenylalanine Tyrosine Cysteine C UUC phe UCC UAC tyr UGC Cys U Serine UCA STOP codon UUA ser A Leucine STOP codon Tryptonphan (rp UGG UUG G leu UCG U CCU CAU CGU CUU Histidine C First base of codon his. CGC CUC CCC CAC Third base of codon Leucine Proline Arginine CUA leu. CCA CAA CGA: A pro arg Glutamine CCG G CUG gin. CGG CAG **ACU** AUU U AAU AGU Asparagine Serine. Isoleucine AUC ACC C AAC AGC asn Ser Threonine ile thr AGA AUA ACA AAA A Arginine Lysine AUG Methionine met (start codon) ACG AAG lys AGG G arg GUU GCU **GAU** GGU U Aspartic acid GUC GCC GGC GAC C asp G Valine Alanine: Glycine GAA GGA **GUA GCA** ala gly val A Glutamic acid GUG GCG GAG GGG G glu

Clinical Tools, Inc.

Properties of individual amino acids:

- → Pro: "structure breaker":
 - only 1 HB (instead of 2)
 - found at the N-terminus of α-helix (N group "free" & Φ angle ~60° close to the α-helix requirements)
- → Gly: prefers irregular structure (rather than α-helix or β-sheet) due to less restricted dihedral angles
- \Rightarrow Ala: a more narrow range of (Φ, ψ) angles prefers the most α-helix but also β-sheet
- \rightarrow hydrophobic residues larger than Ala prefer β-sheet (allows for more room for their large side chains: C_{γ} atoms)

- → amino acids with polar groups:
 - prefer irregular coil structure
 - surface (in contact with solvent) regions to form HBs with water molecules
- → tryptophan (Trp) & tyrosine (Tyr) exceptions:
 - both with large hydrophobic parts
 - in addition small dipole
- → Cysteine (Cys) also exception:
 - SH side-chain group can form weak HBs
 - two Cys participate in disulfide bonding
- Negatively charged residues prefer the N-terminus of and positively charged residue prefer the C-terminus of α-helices

Basic principles of globular protein structure formation:

- → hydrophilic residues on protein surface (HBs with water)
- charged hydrophilic resist moving from high ε (water) to low ε (protein interior)
- → hydrophobic residues comprise the hydrophobic core of globular proteins (hydrophobic effect proportional to the surface of hydrophobic side-chain groups)
- → adhesion of hydrophobic groups: the main driving force of protein globule formation
- secondary structure (i.e. HBs) formed prior or during adhesion: α-helices and β-sheets possess hydrophobic & hydrophilic surfaces

Role of pH in the charge state of individual amino acids

- → pK_a values: $pK_a = -\log_{10} K_a$ $K_a \text{ acid dissociation constant in equilibrium}$ $K_a = [A^-][H^+]/[AH] \text{ with unit mol/l}$ (quotient of ion concentrations)
- → pH definition: pH = $-\log_{10}[H^+]$
- → pH increase \rightarrow decrease in the conc. of H⁺ ions [H⁺]
 - neutral group acquires negative charge
 - positively charged group gets discharged
 - the width of the transition is 2 units of pH (ratio of charged:uncharged from 10:1 to 1:10)

$$\begin{aligned} pK_{a} &= -\log_{10}K_{a} = -\log_{10}\{[A^{-}][H^{+}]/[AH]\} \\ &= -\log_{10}[A^{-}] - \log_{10}[H^{+}] + \log_{10}[AH] \\ &= pH - \log_{10}[A^{-}] + \log_{10}[AH] \end{aligned}$$

$$pK_{a} - pH = log_{10}[AH]/[A^{-}] \rightarrow 10^{pKa-pH} = [AH]/[A^{-}]$$

$$W_{0} = \{1 + 10^{pKa-pH}\}^{-1} = [A^{-}]/\{[AH] + [A^{-}]\}$$

- probability of uncharged state for a positively charged group (note: at $pK_a = pH$, $W_0 = \frac{1}{2}$): Arg, Lys, His

$$W_0 = \{1 + 10^{-(pKa - pH)}\}^{-1} = [AH]/\{[AH] + [A^-]\}$$

- probability of uncharged state for a negatively charged group (note: at $pK_a = pH$, $W_0 = \frac{1}{2}$): Asp, Glu

For a positively charged group, the free energy of uncharging:

$$F_0 = -k_B T \ln W_0 \approx 0 \text{ (for pH > pK_a)}$$

$$\approx 2.3 k_B T \text{ (pK_a - pH) > 0 at pH < pK_a}$$

For a negatively charged group, the free energy of uncharging:

$$F_0 = -k_B T \ln W_0 \approx 0 \text{ (for pH < pK_a)}$$

$$\approx -2.3 k_B T \text{ (pK_a - pH)} > 0 \text{ at pH > pK_a}$$

In both cases, it costs free energy to discharge, but the overall amount of free energy is only \sim several units of $k_{_{\rm B}}T$.

pK_a values of individual amino acids:

Asp(D)	3.9 – charged at neutral pH
Glu(E)	4.3 – charged at neutral pH
Arg(R)	12.0 – charged at neutral pH
Lys(K)	10.5 – charged at neutral pH
His(H)	6.08 – only partially charged at neutral pH
Cys(C)	8.28 – uncharged at neutral pH
Tyr(Y)	10.1 – uncharged at neutral pH