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Abstract
Analysis of a Strange Attractor in R*
Benjamin Coy
Robert Gilmore, Ph.D

Strange attractors in R?® are remarkably well understood because they may be clas-
sified through a topological analysis. This involves determining the organization of
the unstable periodic orbits in the attractor by computing linking numbers for pairs
of these orbits and then identifying a branched manifold that supports these and all
other orbits, and serves to identify the mechanism that generates chaotic behavior.
This topological invariant can be calculated in R? but there is no analog for higher di-
mensions. We analyze a strange attractor generated by a four dimensional dynamical
system and show the first steps in extending the current topological analysis program
to higher dimensions. The linking numbers for pairs of unstable periodic orbits are
computed in three different ways. Firstly, through projections of the attractor to
three dimensional subspaces. Secondly, using a recently proposed higher dimensional
linking integral [1] to compute linking numbers in R* for the first time. Thirdly, with
a dimensionality reduction technique, Locally Linear Embedding, that successfully
represents pairs of orbits in three dimensions allowing the organization within the

strange attractor to be determined.
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Chapter 1: Introduction

A topological analysis program exists for strange attractors generated by three di-
mensional dynamical systems [2]. The biggest current problem for the analysis of
chaotic dynamical systems is that there is no analogous topological analysis program
for strange attractors when the dimension is greater than three.

The topological analysis program depends heavily on the unstable periodic orbits
within the strange attractor. These orbits can be thought of as forming a skeleton
for the attractor and determining the organization of these orbits is a crucial step
in the program. In three dimensions, the organization of the orbits is determined
by computing Gauss linking numbers. A table of these linking numbers, for pairs of
orbits, uniquely describes their organization in the strange attractor. The lack of a
higher dimensional analog to the Gauss linking number is the primary reason why
the topological analysis program is restricted to three dimensions.

In this thesis I will take the first small steps in breaking through this barrier. I will
do this by reviewing the basic steps in the topological analysis program in Chapter
2. In Chapter 3 I then introduce a four-dimensional dynamical system and study
the strange attractor that this dynamical system produces. The strange attractor is
essentially three-dimensional, in the sense that it has a Lyapunov dimension Dy, < 3.
This means that it should be possible to find an embedding of this attractor in a three-

dimensional manifold. Our aim is to extend the topological analysis program to four
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dimensions in the case where the strange attractor is three dimensional by “squeezing”
or “shoehorning” the attractor into a three-dimensional manifold, straightening out
this manifold so that it is essentially a Euclidean space, and then carrying out the
standard topological analysis program in this enveloping manifold.

Surrogates for the unstable periodic orbits can be found through the method of
close returns [2]. This method will be described in Chapter 4 but the important
point is that these surrogates behave very much like the unstable periodic orbits
themselves. The method of close returns is a procedure that is easily extended to
higher dimensions. We can use it to find surrogate unstable periodic orbits in the
attractor in four dimensions but then we need a way to determine their organization.

In Chapter 5 we consider projections of the attractor to three dimensional sub-
spaces. These are the projections (X, Y, Z) and (X,Y,U). We carry out a topological
analysis on the attractor, in these projections, by calculating tables of linking num-
bers in the three dimensional subspaces. In Chapter 6 we explain why some of the
surrogate UPQO’s could not be found for all values of the control parameter, . The
reasons are rather complicated. We determine that this is due to a sequence of ho-
moclinic explosions that are analogous to those in the Lorenz attractor. We calculate
the control parameter values at which the UPO’s are removed and re-introduced to
the attractor for all the UPO’s up to period six. In Chapter 7 we compute linking
numbers for the UPO’s using a second method. This is a recently proposed higher
dimensional linking integral for visible hypersurfaces [1]. We are able to find a visible
point in R* by calculating the minimum distance between rays and the strange at-

tractor. Locating the visible point in this way allows us to compute linking numbers

CHAPTER 1: INTRODUCTION
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for UPQ’s in R* for the first time. In Chapter 8 we compare and discuss several
techniques for dimensionality reduction. We test some of the most popular nonlinear
techniques and determine that the locally linear embedding (LLE) algorithm is well
suited to finding a three dimensional manifold containing the strange attractor in
R%. In Chapter 9 we explain, in detail, how the LLE algorithm can be successfully
applied to the UPO’s within the strange attractor. We generate a three dimensional
representation of the UPQ’s using the LLE algorithm and compute a table of linking
numbers for all the UPO’s up to period five, which determines the organization of
the orbits with the strange attractor. This marks a breakthrough in extending the
existing topological analysis program to strange attractors in R%. Our results are

summarized in Chapter 10.

CHAPTER 1: INTRODUCTION
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Chapter 2: Topological Analysis Program

2.1 Background

A dynamical system is a set of ordinary differential equations of the form

x = — =F(x;¢) (2.1)

where the variables x are called state variables and the variables c are called control
parameters. A dynamical system may generate a strange attractor for certain values
of the control parameters. Unstable periodic orbits (UPO’s) exist in abundance within
strange attractors [3] and a topological analysis of the strange attractor is based upon

these orbits. The steps in this program are as follows [4],
1. Find the unstable periodic orbits
2. Compute topological invariants
3. Identify a template
4. Verify the template
We elaborate on each of these steps in the next four sections.

2.2 Finding orbits

Unstable periodic orbits are located by finding an initial condition that evolves around

the attractor and returns the neighborhood of it’s starting point. These are segments
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in a chaotic data set that almost close up. When this occurs, the difference |x(t) —
x(t + T)| remains small for awhile, where T is the time for one period. The periodic
orbits found in this way are called surrogate periodic orbits. Since they lie in the
neighborhood of the unstable periodic orbit they behave similarly to the orbit itself.
This method of finding orbits is known as the method of close returns and more

details are given in Chapter 4.

2.3 Computing topological invariants

The topological invariants, linking numbers for pairs of orbits, can be determined by
computing the Gauss linking number [5, 6]. This topological invariant is calculated
for all surrogate UPQ’s found by the method of close returns.

The Gauss linking number is defined by

LN(A, B) = % ﬁ 7{3 (ra—rs) (draxdrs) (2.2)

[ra —ral®
where A and B are two loops in R?® described by two three-vectors ra and rg. An
alternative but equivalent method [4] for computing the linking number is by counting
crossings in a two-dimensional projection. Each intersection of the orbits in the
projection is assigned an integer +1. Figure 2.1 shows how the sign is determined,
right handed crossing are assigned a value +1 and left handed crossings —1. The

linking number is half the sum of the signed crossings.

CHAPTER 2: TOPOLOGICAL ANALYSIS PROGRAM
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Figure 2.1: Signed crossings of oriented curves in a two-dimensional projection.

2.4 Identify a template

Each surrogate periodic orbit is assigned a name, using a symbolic sequence, and
a template is proposed that is consistent with a few of the lowest period surrogate
UPQ’s. This identification with a branched manifold relies on following the Birman-
Williams theorem [7, 8]. Before the theorem is stated points in phase space are

identified if they have the same asymptotic future, by the following projection,

x~y if |x(t)—y@)] E20 (2.3)

This identification corresponds to projecting the flow along the stable direction to
a two-dimensional branched manifold. Under this projection the forward flow is
uniquely determined but these trajectories no longer have unique histories. The flow
in R3 becomes a semi-flow on the branched manifold. The important aspect of the
Birman-Williams theorem is that when a strange attractor is projected down to the
branched manifold the unstable periodic orbits remain unchanged, in the following

way. In the projection, there are the same number and type of periodic orbits with

CHAPTER 2: TOPOLOGICAL ANALYSIS PROGRAM
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the same topological organization as those in the strange attractor.

2.5 Verify the template

The template is verified by computing a table of linking numbers for all pairs of
the surrogate UPO’s that are found by the method of close returns. A table of
the linking numbers for pairs of periodic orbits describes their organization on the
branched manifold and within the strange attractor. The mechanism that produces

the strange attractor can be identified from the particular type of branched manifold.

CHAPTER. 2: TOPOLOGICAL ANALYSIS PROGRAM
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Chapter 3: A Four-Dimensional Dynamical System

In this chapter we present the dynamical system that will be considered throughout
this thesis. In Section 3.1 the physical origin of the autonomous differential equa-
tions is explained in terms of a series of dynamo systems introduced by Hide [9].
The dynamo equations are then simplified and in Section 3.3 they are changed to
dimensionless form. In Section 3.4 the dimensionless equations are transformed to
the extended Malkus-Robbins equations. Lastly, the strange attractor generated by

these equations and their connection to the Lorenz system are discussed.

3.1 Origin of the equations

A hierarchy of dynamo systems was introduced in a seminal paper by Hide [9]. Each
member of the hierarchy consists of a number of units connected, either in a ring
or lattice, where each unit contains a homopolar dynamo driven by a Faraday disk.
Within each unit are a number of motors connected either in series or parallel with
the coil of the dynamo. Each system is labeled as S(N;J(¢)), where N is the number
of units and J(i) is the number of motors contained in the units, i = 1,2,..., N.

The behavior of each system is governed by a set of autonomous nonlinear differ-
ential equations. Some of the simplest members of the hierarchy correspond to pre-
viously studied dynamo systems. These include an S(1;0) system studied by Bullard
[10]; an S(2;0,0) system studied by Rikitake [11] and an S(1; 3) system proposed by

Malkus [12] and studied by Robbins [13]. We will focus on the S(1;3) system and
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show how, under certain simplifying assumptions, the governing differential equations
are an extended form of the Malkus-Robbins dynamo. In the literature [14, 15], these
equations have been transformed and recast into several different forms. Here we will
derive the set of nonlinear differential equations directly from considerations of the
dynamo system. This is a two-step procedure where the equations are first re-written
in terms of dimensionless variables in Section 3.3 and then transformed to their final
form in Section 3.4.

This model is a four dimensional dynamical system with two properties that make
it ideal for extending the existing methods for topological analysis in R3. The first
is that the model reduces to a well-known system, namely the Lorenz system, in a
particular limit of the control parameter values. The second is that the attractor
has a Lyapunov dimension that is less than three, such that it is essentially three
dimensional. That is, in principle, there is a three dimensional manifold in which the

strange attractor generated by this dynamical system can be embedded [16].

3.2 The Dynamo Equations

Here we consider an S(1;3) type system which consists of a single unit Faraday disk
and three electric motors. Figure 3.1 shows the coil and the disk connected in series
and three motors. Each motor is labelled according to its connection to the rim, axle
or coil as m,, m, and m, respectively.

The first motor, m,, is connected through one terminal to a brush at the rim of
the disk. The second terminal is connected to a junction common to all three motors.

This places m, in series with m, and the axle. It also connects m, in series with

CHAPTER 3: A FOUR-DIMENSIONAL DYNAMICAL SYSTEM
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I(t)—t—I‘“"(t)

motor (a)

Figure 3.1: Illustration of an S(1;3) type system. Image taken from [0]. Here
I(t) = I.(t), the current through the coil

the motor m, and the coil. The two motors, m, and m,, are connected in parallel,
with m, connected to the axle and m. connected to the coil. The equivalent circuit
diagram for this setup is shown in Figure 3.2. The current, I, resistance, R, self-
inductance, L, and angular speed of the motor, w, for each branch of the circuit are
labelled using the same convention as the motors. The subscripts 7, a or ¢, indicate

that the branch of the circuit is connected to the rim, axle or coil respectively.

CHAPTER 3: A FOUR-DIMENSIONAL DYNAMICAL SYSTEM
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Figure 3.2: Equivalent circuit diagram for the S(1;3) type system

To simplify the system, and allow for comparison with the Malkus-Robbins dy-
namo, the motor m, is replaced by a resistor and m, by an element with inductance

and resistance only. In terms of the quantities given in Figure 3.2, we have

Wo=Ls=w,=0 (3.1)

The emf generated by the motion of the disk is given by I.MQ where I. is the
current through the coil, € is the angular velocity of the disk and 270 is the mutual

inductance of the disk and coil [17]. This emf must be balanced by the sum of the

CHAPTER 3: A FOUR-DIMENSIONAL DYNAMICAL SYSTEM
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voltage drops throughout the circuit. The sum of these voltage drops gives,

uq =Y g Wetld)

a T ctte HCC ‘2
o —— (I + L) Ry + LR+ Hw (3.2)

The last term is the voltage drop across the motor. The motors are assumed to
have linear characteristics such that the voltage drop is proportional to the angular
speed of the motor. If we denote the proportionality constant by H then the voltage
drop is given by Hw where w is the angular speed of the armature of the motor.

Next we consider the dynamics of the disk. The moment of inertia of the disk
is denoted by A and the applied torque by G. The mechanical friction of the disk

provides a retarding torque given by —K. Newton’s second law then gives

AE‘% — G- ML(L+1) - KO (3.3)

Applying Newton’s second law to the motor, m,, we find that

Bc% = H,I, — Do, (3.4)

where B, is the moment of inertia and w, is the angular velocity of m.. The torque
of the motor is proportional to the current flowing through it and is given by H.I..
Finally the term — D, w, is the retarding torque due to friction. Since m. and m, are

in parallel, the final equation required to describe the system is obtained by equating

CHAPTER 3: A FOUR-DIMENSIONAL DYNAMICAL SYSTEM
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the voltage drops across these two motors.

dl.
IaRa = IcRc + Lc_dI?' + chc (35)

3.3 Dimensionless Equations

To write the four differential equations in dimensionless form we use the following

substitutions

i (]Li) " (3.6)
5y = (%)m I, 3.7)
To = (%)1/2 L, (3.8)

M\'? ( R.B,
2o = (E) (Lch) We (3.10)

Tayr = Ra,'r/Rc (311)
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lar = Las/Le (3.12)

Tac = Tq + Te (3.13)

This leads to the following set of differential equations

Cilf!;c = TqTq — Tc — (Igcig) 2 (3.14)
T -
% _ (Gﬁéc) (1 — Zcac) — (f:é:) y (3.16)
dEZf =T (gﬁ) Ze (3.17)

3.4 Transformed Equations

The dimensionless equations can be transformed to take a similar form to the Malkus-

Robbins dynamo equations. We use the following substitutions

ze =alU (3.18)

CHAPTER 3: A FOUR-DIMENSIONAL DYNAMICAL SYSTEM
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z. = bX (3.19)
y=cld—2Z)—ra (3.20)
Toe = €Y (3.21)
T=JfT (3.22)

The transformed dimensionless equations are

dX _ ef Lch2

ﬁ =Ta (—i)_) Y - (1 + 'ra)f-X - (B_CECE) fU (323)
av _ 1 K?f.di) X - (b-ci) XZ = (ra + rr)fY} (3.24)
d Iy e e

dZ _ ( L. fGM  fKr, befGML, _ (fKLc
dT (ARC> (de" cR, ¢ )+< cAR2 )XY (ARC>Z (3:25)

dU _ (bf D.Le
L(@x-@e  ow

These transformed equations are the extended Malkus-Robbins equations which we
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will now write in the more familiar form

X=0Y -X)-pU (3.27a)
Y = ? -Y-XZ (3.27b)
Z=-—vZ+XY (3.27¢)
U=X-AU (3.27d)

where differentiation is performed with respect to 7" and B = 1v?3. The control

parameters are obtained under the following correspondence,

a= ( AR )1/2\/5 (3.28)

GML,

AR2 \'?r, 47
= < a z 3.29
v=(arm) (329)
c=(re+r)(1+1/r,) (3.30)
.+ Y
d= — KR (3.31)

(re +r)(14+1/7,)

CHAPTER 3: A FOUR-DIMENSIONAL DYNAMICAL SYSTEM
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1/2
e= ( szl\fi ) (ra + r"zﬁzlf L/ra) (3.32)
b 3.33)
f= T+ Tr (3.
such that,
o= (1+714)f (3.34)
- (Lt 3.35
= (5)! 8:5)
1 (bedf
D_.L.
e (B, -

The dynamical system in the form of Equations (3.27) will be used in subsequent
chapters and referred to as the EMR (Extended Malkus-Robbins) equations.

These dynamical equations are an extension of the Malkus-Robbins dynamo equa-
tions [13]. They essentially describe a Lorenz-like system with feedback. The strange
attractor generated by the (X,Y, Z) subsystem behaves like a Lorenz attractor [i8]

that is coupled to the U subsystem through the control parameter 3. When 8 = 0
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Equations (3.27) become identical to the Lorenz equations under the correspondence,

(a0, R/v,v) = (o,1,b). (3.38)

The classic choice of Lorenz parameters (o, b, r) = (10,8/3, 28) corresponds to (o, v, R)
(10,8/3,74.667). These values will be used throughout along with A = 3.2. For this
particular choice of the control parameters chaotic solutions extend well into the 8 > 0
regime, until 3 ~ 8 at which point a boundary crisis destroys the attractor [19]. We
will consider the strange attractor generated by Equation (3.27) for these values of
the control parameters over the range of values 0 < f < 8.0. An X-Z projection
of the strange attractor for 8 = 3.0 is shown in Figure 3.3. In this projection the
attractor bears a strong similarity to the Lorenz attractor. This projection exhibits
the same type of symmetry as the Lorenz attractor, rotation about the Z-axis, and

reduces to the Lorenz system as 3 — 0.

3.5 Summary

We have presented the four-dimensional dynamical system, Equations (3.27), that will
be considered throughout subsequent chapters. The physical origin of these equations
was given in terms of the electro-mechanical self-exciting Faraday-disk homopolar dy-
namo systems first introduced by Hide []. The dynamo equations were then recast
and transformed in Sections 3.3 and 3.4 to give the extended Malkus-Robbins equa-
tions.

The strange attractor generated by this dynamical system was also discussed.

CHAPTER 3: A FOUR-DIMENSIONAL DYNAMICAL SYSTEM
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Figure 3.3: The X-Z projection of the strange attractor for (o,v, R, B,A) =
(10,8/3,74.667,3.0,3.2).

The two key features of this attractor are that it reduces to the well-known Lorenz
attractor for B = 0 and that it has Lyapunov dimension, Dy ~ 2.2 [16]. The first
feature makes this attractor an ideal model for further study since results can be
compared to the Lorenz attréctor for low values of the control parameter, 5. The
fact that we have D;, < 3 is appealing because, although the attractor exists in R4, it
is essentially three dimensional. This makes the strange attractor an ideal candidate
for extending existing methods, the computation of Gauss linking numbers, that have

been successfully applied to strange attractors in R®.
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Chapter 4: Analysis of the Surrogate UPO’s in R4

The key to analyzing low dimensional (d < 3) strange attractors is through the orga-
nization of their unstable periodic orbits (UPO’s) [20]. Even though the topological
tools used in this analysis cannot be directly applied in higher dimensions, we con-
tinue to focus on the UPQ’s whilst searching for useful methods to determine their
organization. The method of close returns [2] is used to find the surrogate UPQ’s for
low dimensional attractors and this technique is easily extended to higher dimensions.

In Section 4.1 we describe the procedure for finding the surrogates using the
method of close returns. In Section 4.2 we show how two components of a Poincaré
section can be used to label each of the surrogate UPO’s. The efficiency for finding
these surrogates is improved in Section 4.3. In Section 4.4 we demonstrate how a
Fourier representation of UPQO’s can be used to construct surrogates for particular

values of the control parameter, (.

4.1 Finding surrogate UPQO’s through the method of close
returns

UPOQ’s are abundant in strange attractors and initial conditions lying close to a UPO
will remain close to the orbit for some amount of time. If the initial condition is close
enough to a UPO along its unstable manifold, and its unstable Lyapunov exponent is

not too large, the initial condition will evolve to a neighborhood of its starting point

[2]. Such a trajectory lies close to the UPO for a full period and so behaves very
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similarly to the UPO itself. These trajectories are called surrogate UPQ’s, they can
be obtained from the time series data for the strange attractor. They are found by
locating segments of the time series that close up such that a succession of point pairs

in the time series lie close together. For an attractor in R?* the condition is

1 Xk — Xkl <6 (4.1)

where X; = X(&), |X]| = VX2 +Y2+ 22+ U? and k = 0,1,2..m such that the
closeness condition holds for some time ¢,,, that is a reasonable fraction of the time-
period of a period one orbit.

The parameter ¢ is usually chosen to be about 1% of the diameter of the strange
attractor [4]. The actual value used depends on a compromise between the accuracy
of the surrogates and how many are required. A more stringent threshold will result in

fewer surrogates that are very good in the sense that they close up well and represent

the UPO accurately.

4.2 Using Poincaré sections

Each surrogate orbit can be labeled using a symbol representation introduced by
Moroz et al [16] which is based on the labeling used for the Lorenz attractor [21, 22].
The symbol representation is a sequence of the symbols L and R indicating passage in
the neighborhood of the left or right focus respectively (cf. Figure 3.3). This passage
is checked by the use of a Poincaré section consisting of two half infinite planes, each

centered on one of the foci of the attractor. The number of times that a surrogate

CHAPTER 4: ANALYSIS OF THE SURROGATE UPO’s IN R*
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UPO intersects these two planes, before approximately returning to its starting point,
is the topological period of the orbit. For example, the period three orbit shown in
Figure 4.1 intersects the left component of the Poincaré section once and the right

component, twice.

45 T T T T T T T T

35 B

30 | L R E

20 e

-25 -20 -15 -10 5 0 5 10 15 20

Figure 4.1: A surrogate period three orbit, found by the method of close returns,
for 8 = 3.0 in Equations 3.27. The flow is directed counter-clockwise around the
right hand focus. The point of close return is located at (Y, Z) = (-1.59,9.33).
The dashed vertical lines are the two components of the Poincaré section.

Figure 4.1 illustrates the natural way to label each of the UPOQ’s. Every orbit is
labeled by a sequence of two symbols, L and R, indicating the order of intersection
with component L or R of the Poincaré section. Under this labeling scheme the orbit
shown in Figure 4.1 is LR?. Checking for close returns only when the trajectory
crossed the Poincaré did not yield a sufficient number of surrogates as the control

parameter, 3, was increased. This is why the point of close return in Figure 4.1 is

not located near either compornent, L or R, since the closeness condition, given by

CHAPTER 4: ANALYSIS OF THE SURROGATE UPQO’S IN R*
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Equation 4.1, was continually checked along the trajectory to find a greater number

of surrogate UPQ’s over the range of control parameter values.

4.3 Incorporating the time-period of orbits

The time period of an orbit is dependent on the control parameter value, 3. Finding
surrogates for a periodic orbit for several values of the control parameter shows that
it is possible to fit this dependence with a smooth curve. This is displayed by Figure
4.2 where the fit has been made by a polynomial of degree two for the UPO LLRR.
It was found that a quadratic fit could be used for all the low period orbits, up to

period six.

44 T T T T ¥ T T

42 |-

38

Time-Period

36 |

34

Figure 4.2: Time-period as a function of 3 for the UPO L?R?. The solid line
shows the quadratic fit to the data and the dashed lines show the tolerance used
to find more surrogates.

The predictable dependence of the time-period of a surrogate allows the method

of close returns to be used more efficiently. This is achieved by setting a tolerance
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on the time-period. Figure 4.2 shows the tolerance used for the orbit L2R?. For each
point in the data set only the future points lying within the tolerance range were
checked for close returns, significantly improving the efficiency of the algorithm. The

time-periods for all the orbits found using this method are shown in Figure 4.3

4.4 T T T T T T T

42 |- 4

Time-Period

36 R

34 g

32 M# 4

L ¥ ul

3 1 I 1 L L Il L

0 1 2 3 4 5 6 7 8

Figure 4.3: Time-period as a function of 8 for all the surrogate UPO’s L2R?
found using the tolerance shown in Figure 4.2.

4.4 Fourier representation of UPO’s

4.4.1 Parsing The Orbits

Once a surrogate periodic orbit has been extracted, a Fast Fourier Transform (FFT)
[23] is performed on the time series data. However, this requires that the time series
has 2" data points where n is an integer. To fulfill this requirement linear interpolation
is used to expand or shrink the time-step.

For example, the time-series for a surrogate period two orbit is shown in Figure

CHAPTER 4: ANALYSIS OF THE SURROGATE UPO’s IN R*
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4.4a. This particular orbit contains 158 data-points. Figure 4.4b shows the time
series after it has been parsed to 28 = 256 data-points. The z coordinates of the orbit
are computed for 256 equally spaced time intervals t,. If the time for one complete

orbit is T then the ¢, are given by

nT
n= — 4.2
t 256 (42)
where 0 < n < 255.
15 e, 15

&
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(a) Surrogate period two orbit (b) Parsed orbit with 256 data-points

Figure 4.4: z-coordinate time series for the period two orbit, LR.

The z coordinates are computed by linear interpolation of the two nearest points
from the original time series. The very first point of the parsed time series will be
identical to the original while all the others will be interpolated values.

The same process is repeated for each of the other three coordinates. This results

in four parsed time series each containing 256 data-points.
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4.4.2 Computing the Fourier Coefficients

The next step in finding a Fourier representation of the UPQ’s is to compute their
Fourier coefficients. This involves performing a Fast Fourier Transform on each orbit
for several values of the control parameter, 5.

First we will consider a single orbit for a fixed value of 8. For example, the period
two orbit, LR, for 3 = 0. The parsed time series for the z coordinate of this orbit is

shown in Figure 4.4b. We represent this discrete time-series as,

z;(8) = z(t;) = z(jA), j=0,1,2,..,N -1 (4.3)

where A = T/N. Performing an FFT, using a standard method [24], on this time

series will produce N = 2" complex Fourier coeflicients given by,

N-1

Xi(B) = Y _ @i (B)erm N (4.4)

Jj=0
These Fourier coefficients can be used to express the orbit as a sum using the discrete

inverse Fourier transform,

N-1
2i(B) = 5 3 Xu(Ble I )
k=0

If we express the Fourier coefficients in terms of real and imaginary parts as

Xi(B) = Ax(B) +iBw(B) (4.6)
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and use the fact that the original data set, z;(8), consisted only of real numbers, then

the sum in Equation (4.5) reduces to

z

1

z;(B8) = N Ay (B) cos(0) + Bk(B) sin(6) (4.7)

0

ES
i

2mik

where 0 = N

However, not all of the N complex coefficients are required to produce the orbit
accurately. The highest frequency components can be neglected since they are only
present because the surrogate orbit does not close up completely (Gibbs phenomenon
[25]). For N = 256, it was found that forty coefficients were sufficient to produce
periodic orbits with this method. Figure 4.5 shows a plot of |A|? + |Bi/?, on a
logarithmic scale, for the surrogate orbit LRRR with, § = 4.5, and clearly shows that
the Fourier coefficients at the higher frequencies only give a negligible contribution
to the sum in Equation 4.7. Therefore, finding the first forty coefficients for each
coordinate (z,y, z,u) is sufficient to produce the UPO for a fixed value of the control

parameter in the range 0 < g8 < 8.

4.4.3 Fitting the Fourier Coefficients

The purpose of computing the Fourier coefficients for each orbit is to be able to
produce the orbits for any value of the control parameter 8. In order to do this the
coefficients must be computed for each orbit at several values of the control parameter.

As an example, consider the period 3 orbit LLR. If this orbit has been found for
several values of 3, using the method of close returns, we can compute the Fourier

coefficients for each value of the control parameter.
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Figure 4.5: Power spectrum plot of |A|? 4+ |Bi|* as a function of k for the
z-coordinate time series data of the orbit LRRR with 3 = 4.5.
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A plot of the first Fourier coefficient, A ,as a function of 8 is shown in Figure
4.6. Tt is possible to fit this plot with a smooth curve which parametrizes the Fourier
coefficient. It was found that every Fourier coefficient could be approximated by a
polynomial of degree three for all the orbits up to period five. The coefficients of
these polynomials, a;, bx;, can then be used to compute the Fourier coefficients for

any value of 3.

Ap(B) = aro + ap1B + ar2f? + ar3p’ (4.8)

Bi(B) = b + b1 + b o + b3 (4.9)

Repeating the process for each coordinate (z,y, z,u) gives a complete Fourier

representation of each UPO found in the strange attractor.

4.4.4 Producing an Orbit for any Value of the Control Pa-
rameter

Producing a UPO for any given value of 3 involves three steps that invert the process
described above.

The first step is to compute the Fourier coefficients for a chosen value of 3. The
Fourier coefficients can be found from Equations 4.8 and 4.9 using the known values
of the polynomial coefficients.

The next step is to produce the coordinates of the orbit from the Fourier coeffi-
cients. For example, the 2-coordinates can be found from equation 4.7 using the first

forty Fourier coeflicients.
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Figure 4.6: Plot of the first Fourier coefficient as a function of 3 for the period
three orbit LLR.

Lastly, the procedure is repeated for each of the other three coordinates to con-

struct the entire UPO for a specified value of the control parameter, 3.

4.4.5 Remarks

The methods described here can be used to construct UPQ’s for any specified value
of control parameters. There are two main requirements to use this method. Firstly,
the UPQ’s must be found for several values of the control parameter. This can often
be achieved through the method close returns. The second requirement is that the
Fourier coefficients can be fitted by a polynomial such as in Figure 4.6. This will be
possible when the UPO changes smoothly or “adiabatically” as the control parameter

is varied.
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If both these requirements are met then the method can be used to construct
UPO’s without searching for surrogate orbits in the strange attractor every time the
control parameter is changed. Once the polynomial coefficients have been found in
equations 4.8 and 4.9 the UPO’s can be constructed for any value of the control
parameter. The method is a very useful tool for analyzing the topological properties

of UPQO’s as the control parameters are varied.

4.5 Summary

We have described in this chapter how the method of close returns can be applied in R*
to find surrogate UPO’s. In Section 4.2 we explained how each surrogate is assigned
a symbolic description using the Poincaré section. We also showed how incorporating
the time-period of orbits can improve the efficiency of the method of close returns. In
Section 4.4 we introduced the Fourier representation of UPOs and showed how this

can be used to generate surrogate orbits for particular control parameter values.
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Chapter 5: Three-Dimensional Projections

The mechanism responsible for creating a low dimensional strange attractor and or-
ganizing all the UPO’s in it can be determined through a topological analysis of the
dynamical system. The procedure for this involves computing topological invariants
of the UPQ’s, their linking numbers, in R3.

The strange attractor generated by Equations (3.27) exists in R* and the organi-
zation of the UPQ’s cannot be determined in the same way as for R? since knots fall
apart for dimensions greater than three. However, for the control parameter values
given in Section 3.4, the Lyapunov dimension of the attractor is D;, < 3. This is an im-
portant property because it means that the attractor is essentially three-dimensional
in the sense that there is a three-dimensional manifold in which the attractor can be
embedded [16].

In this chapter we will review a previous study [16] on the strange attractor gen-
erated by the EMR Equations (3.27). This work involves projections of the attractor
to three-dimensional sub-spaces in order to carry out a topological analysis. The two
simplest projections are (X,Y,Z,U) — (X,Y,Z) and (X,Y,Z,U) = (X,Y,U).

By constructing a table of the linking numbers in a projection for just the lowest
period UPO’s it is possible to see if these topological indices are compatible with a
branched manifold. In principle, the linking numbers for all UPO’s should be checked.

However, in practice, it has been found that computing linking numbers for about
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half a dozen orbits is often sufficient [2, 4, 26]. It is this branched manifold that
identifies the mechanism responsible for the chaotic behavior.

In the (X,Y, Z) subspace the linking numbers are expected to be consistent with
the Lorenz branched manifold for small values of the control parameter 3. This
branched manifold has a rotational symmetry, (X,Y,Z) — (-X,-Y,Z) , and the
table of linking numbers for the low period orbits is given in Table 5.1. The (X,Y,U)
subsystem exhibits inversion symmetry, (X,Y,U) — (=X, =Y, =U), and the linking
numbers for the inversion symmetric Lorenz branched manifold are given in Table
5.2.

We will focus on these two projections and present a new result for the (X,Y,U)

subspace by analyzing surrogate UPQ’s up to period five.

Table 5.1: Linking numbers of low period orbits in the rotation-symmetric
Lorenz branched manifold.

LR LLR LRR LLLR LRRR LLRR

LR - 1 1 1 1 2
LLR 1 - 1 2 1 2
LRR 1 1 - 1 2 2
LLLR | 1 2 1 - 1 2
LRRR | 1 1 2 1 - 2
LLRR | 2 2 2 2 -
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Table 5.2: Linking numbers of low period orbits in the inversion-symmetric
Lorenz branched manifold.

LR LLR LRR LLLR LRRR LLRR

LR - 0 0 0 0 0
LLR 0 - 0 +1 0 +1
LRR 0 0 - 0 -1 -1
LLLR | O +1 0 - 0 +1
LRRR| O 0 -1 0 - -1
LLRR | O +1 -1 +1 -1 -

5.1 Review of previous work on “When are projections em-
beddings?”

Moroz et al [16] have investigated projections of the strange attractor generated
by Equations (3.27) to determine which projections provide embeddings. This was
achieved through a topological analysis based upon the UPQ’s within the attractor.
Surrogate UPO’s were found using the method of close returns and then projected
to a three dimensional subspace such that their linking numbers could be calculated.
The linking numbers for pairs of surrogate UPO’s were found by counting crossings
in a two-dimensional projection. Tables of the linking numbers were computed for
each of the projections over the control parameter range 0 < 8 < 8.

The (X,Y,Z) projection produced a table of linking numbers that changed as
the control parameter, (3, was varied. There were three distinct regimes. For low
values of the control parameter, 0 < 8 < 0.6, the linking numbers computed were

compatible with the Lorenz branched manifold with rotation symmetry. This was
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expected since the Equations (3.27) reduce to the Lorenz equations as 8 — 0. In
the intermediate range, 0.6 < 3 < 5.4, the linking numbers were found to decrease
through integer steps and the table was not compatible with any branched manifold.
For higher values, 5.4 < 8 < 8, the linking numbers were the negative of those found
for the small 3 regime. As the linking numbers decrease through integer steps the
attractor undergoes self-intersections and the uniqueness theorem [27] is violated in
the projection (the uniqueness theorem is never violated in the full four-dimensional
phase space). This prevents the projection to the (X,Y, Z) subspace from providing
an embedding of the attractor.

The (X,Y,U) projection was found to exhibit entirely different behavior. The
table of linking numbers for this projection was compatible with the Lorenz branched
manifold with inversion symmetry. Since the compatibility persisted over the range
of control parameter values, 0 < § < 8, no self-intersections were found for this

projection. We will investigate this further in Section 5.2 by considering higher period

orbits beyond the six listed in Table 5.2.

5.2 Computation of linking numbers for pairs of orbits

The first step in computing the linking numbers is to find surrogates for pairs of orbits
by the method of close returns. As an example we will consider the period two orbit
LR and the period five orbit LLRLR.

Surrogates were found for each of these orbits, in the full four-dimensional phase
space (X,Y,Z,U), as 3 was increased incrementally, in steps of 0.01, starting from

f = 0 and ending at § = 8. Surrogates for the orbit LR were obtained for 795
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Table 5.3: Linking numbers for the period five orbits with all lower period orbits
in the rotation-symmetric Lorenz branched manifold

LR LLR LRR LLLR LRRR LLRR

LLLLR

LLLRR
LLRRR
LLRLR
LRRLR
LRRRR

DN NN DN
— DN W N WD
N W N W N
— N W N W W
L W o W o~
N W W W

Table 5.4: Linking numbers for the period five orbits with all lower period orbits
in the inversion-symmetric Lorenz branched manifold

LR LLR LRR LLLR LRRR LLRR

LLLLR | O -1 0 -2 0 -1
LLLRR | O -1 1 —2 1 0
LLRRR | O -1 1 -1 2 0
LLRLR | O -1 0 -1 0 -1
LRRLR | O 0 1 0 1 1
LRRRR | 0 0 1 0 2 1

values of 3 and surrogates for the orbit LLRLR were found for 476 values of 3. For
the values of 8 where surrogates for both orbits were found the linking number was
computed in the (X,Y, Z) and (X,Y,U) subspaces. To calculate the linking number
for any value of the control parameter in the range 0 < 8 < 8 we can use the method
described in Section 4.4 to produce surrogate orbits for the desired value of 3. The

Y — U projection of these surrogate UPO’s is shown for two values of the control
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parameter, 3 = 0.8 in Figure 5.1 and 8 = 4.83 in Figure 5.2.

2.5 Y

2+

15

1

05 |

0Fr

-05

1}

15

2

-2 | 5 - - -“\\.,.,.\....‘...w.wu-uw.“. A.‘.,,\.‘".,.\.w.,.. “’ —

3 1 i 1 1 1
-20 -10 0 10 20

Figure 5.1: The Y - U projection of the two UPO’s LR and LLRLR for 8 =
0.8. Their linking number is +1 for this value of the control parameter, f.

In the (X,Y, Z) projection the linking numbers found agreed with the behavior
reported by Moroz et al [16]. The linking number as a function of 3 is shown in Figure
5.3a. For A = 0 the linking number is 42, as expected from Lorenz branched manifold
with rotation symmetry, Table 5.3, since this is the limit that reduces to the Lorenz
equations. As f3 is increased we can see the linking number decrease through integer
steps until finally assuming the negative of the values for 8 = 0. Self-intersections
occur each time the linking number changes in this projection.

In the (X,Y,U) projection the linking number was 0 for the control parameter

range, 1.5 < 3 < 8, which is compatible with Lorenz manifold with inversion sym-
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Figure 5.2: The Y - U projection of the two UPO’s LR and LLRLR for 8 =
4.83. Their linking number is zero for this value of the control parameter, 3.

metry, Table 5.4. However, for 0 < # < 1.5 the linking number in this projection
becomes zero. Figure 5.3b shows a single step down that indicates self-intersections
also occur in this projection as for the (X, Y, Z) projection. If this is the case then the
(X,Y,U) projection fails to provide an embedding. To check for this the minimum
distance between the orbits was computed as a function of 3. This was done for
each of the projections as well as the full four-dimensional phase space. Plotting this
minimum distance as a function of 3, Figure 5.4, we can see a sharp downward spike
each time self-intersections occur in a projection. Each time this minimum distance

tends toward zero the linking number for pairs of orbits changes. In the (X,Y,U)
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projection there is a single minimum in the minimum distance that corresponds to
the change in linking number near 3 = 1.5, seen in Figure 5.3b. As the linking num-
ber changes the attractor must undergo self-intersection and the uniqueness principle
is violated in the (X,Y,U) projection. This confirms that there are some values of
B for which this projection is not an embedding. For g > 1.5 this projection does
provide an embedding that is consistent with the Lorenz branched manifold with in-
version symmetry but for 3 < 1.5 an embedding no longer exists. Figure 5.4 also
shows the minimum distance between the two orbits in the original four-dimensional
space before being projected. This minimum distance never reaches zero because the

uniqueness principle guarantees that no self-intersections occur.

r

Linking Number
©
Linking Number
°

2 " s L " L . K L L L L 2 2 .
[ 1 2 3 4 5 -] 7 8 0 1 2 3 4 5 6 7
B B

(a) The (X,Y, Z) projection (b) The (X,Y,U) projection

Figure 5.3: Linking numbers for the pair of surrogate unstable periodic orbits
LR and LLRLR

5.3 Summary

It was originally thought that the two simple projections showed entirely different
behavior. In the (X,Y,Z) projection the attractor undergoes self-intersections and

the projection fails to provide an embedding. The (X,Y,U) projection was thought
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Figure 5.4: The minimum distance between the orbits LR and LLRLR as a
function of 8. The minimum distance is shown for the two simplest projections,
(X,Y,Z) and (X,Y,U) as well as the full four dimensional phase space.

to provide an embedding for all values of the control parameter in the range 0 <
B < 8. We have shown here that the (X,Y,U) projection is not dissimilar from the
(X,Y, Z) projection since the table of linking numbers also change as 3 is varied.
This projection is not an embedding for B < 1.6. Neither of the simple projections
provide embeddings for all values of 3 but there is, in principle, a three-dimensional
manifold in which the attractor can be embedded. Alternative approaches to the
simple projection techniques will explored in Chapter 9 to find an embedding of this

attractor.
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Chapter 6: The Missing Orbits and Homoclinic Explosions

6.1 Homoclinic Orbits

As the control parameter £ is varied it may be the case that the stable manifold of
the origin includes the unstable manifold of the origin. When this situation occurs we
label the control parameter as 3 = 3’ and there is a homoclinic orbit associated with
the unstable saddle point at the origin. Any trajectory that starts on the unstable
manifold of the origin will approach the origin as t — +oc. The bifurcation associated
with a homoclinic orbit is known as a homoclinic explosion and will be discussed in

the next section.

6.2 Homoclinic Explosions

In this section we will follow the approach used by Sparrow [2&] for the Lorenz system
and apply those methods to our strange attractor. We first attempt to detect if there
are any homoclinic explosions in the parameter range 0 < 8 < 8.0. If any homoclinic
explosions do occur there will be a change in behavior of the unstable manifold of the
origin as the control parameter is varied.

There are two types of homoclinic explosions and each type can either add or
remove orbits from a strange attractor [25].

We will consider one branch of the unstable manifold of the origin which we
calculate numerically. This is done by choosing an initial condition very close to the

origin but displaced in the direction of the eigenvector associated with the positive
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eigenvalue of the linearized flow. The X-Z projection of a trajectory computed by
this method is shown in Figure 6.1 for 8 = 0. The trajectory was computed until it
had reached seven consecutive maxima in the Z variable. This will allow the detection
of homoclinic explosions associated with orbits up to period six.

50
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N 25
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0 1 ] i 1 i
-10 -5 0 5 10 15 20

Figure 6.1: The X-Z projection of the right-hand branch of the unstable man-
ifold of the origin for § =0
As 3 is increased from a value below 3’ there will be a change in behavior of
the unstable manifold of the origin. For B close to 3’ we can describe the unstable
manifold of the origin in terms of a symbolic sequence introduced by Sparrow. This
sequence, k(3), is in terms of two symbols, T and S, shown in Figure 6.2. Each
symbol represents a tube that surrounds the unstable manifold of the origin from the

point where it leaves a small volume around the origin until it re-enters the volume
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for the first time. T corresponds to the right-hand branch, which leaves the small
volume in the direction associated with the positive eigenvalue of the linearized flow.
S is the corresponding tube for the left-hand branch. The sequence, k() will change

as (3 increases from 8 < ' to § > 4.

e

PR o

vl
L
Figure 6.2: The unstable manifold of the origin in terms of a symbolic sequence.

Image taken from [25].

There are two different types of homoclinic explosion. Each type, (a) and (b),

produces a distinct change in k(3). For type (a) homoclinic explosions the change is

Type (a): TTTTTT..... = TSSSSS..... (6.1)
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and for type (b) the change is

Type (b): T TS TS TS..... = TS TS TS TS..... (6.2)

If k(B) changes in the forward direction in either (6.1) or (6.2) a strange invariant
set is produced. A change in the reverse direction removes a strange invariant set
6.2.1 Return Maps for the RL3-Homoclinic Explosion

We can show that a strange invariant set exists on only one side of the homoclinic
explosion by considering numerically computed return maps. Here we will consider
the RL® explosion since this is the lowest period found in the parameter range under
consideration. Figure 6.3 shows how the unstable manifold of the origin changes as
(3 is increased from 5.02792 to 5.02793. Between these two control parameter values

the RL3 homoclinic orbit exists.

L " N L i L L s L
25 -20 -15 -10 5 ¢ 5 10 15 20 25 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

(a) Y-Z projection for § = 5.02792 (b) Y-Z projection for § = 5.02793

Figure 6.3: Change in behavior of the unstable manifold of the origin

We will compute return maps for trajectories that lie close to the unstable manifold
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of the origin by choosing an initial condition near to the origin but displaced in the
Z-direction. Such a trajectory first tends toward the origin and then continues in the
direction of the eigenvector, &, associated with the positive eigenvalue of the linearized
flow. When the trajectory returns close to the origin and crosses the initial Z value
this final position is recorded and plotted against the initial position. The positions
recorded are along the direction of the eigenvector €. For 5 = 5.02793 this normalized
eigenvector is (0.439,0.898,0,0.028). The coordinate being recorded, which we denote

e, is given by,

e = 0.439X + 0.898Y + 0.028U (6.3)

We denote initial the position along this direction as e, and the first return as
ens1. A series of initial positions along this direction were used to construct the return
maps shown in Figures 6.4 and 6.5.

The return map shown in Figure 6.5 shows that trajectories will simply escape
from the region that is close to the homoclinic orbit and not return close to the origin.
However, for the return map shown in Figure 6.4 trajectories can remain within a
region close to the homoclinic orbit forever. That is, as the control parameter 3 is
increased above 5.0279 a complete RL3 invariant set is removed from the strange

attractor. The simplest members of this set are LR®, RL3, LR3RL?, etc.

6.2.2 Example: The RL’-Homoclinic Explosion

For § = 0 the sequence describing the unstable manifold of the origin, up to the

seventh symbol, is RLS. This can be seen from Figure 6.1. As 3 is increased these
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Figure 6.4: Return map for 5 = 5.0279

seven symbols remain the same until 8 = 2.75. For this value of § the sequence has
changed to RL®?R. Figures 6.6a and 6.6b show the change in the unstable manifold
of the origin near 8 = 2.75. The nature of this change suggests the existence of a
RL%-homoclinic orbit somewhere in the range 2.74 < 8 < 2.75. Equations (6.1) and
(6.2) show that the change in the first two symbols of k() is identical for type (a) and
(b). We need to follow the unstable manifold of the origin around the tubes at least
three times to distinguish between the two types. For a RL*-homoclinic explosion the
two possible changes in the symbolic sequence can be found by substituting T=RL>
and S=LR5 into equations (6.1) and (6.2). This means that we need to find k(3), in

terms of L and R, up to the first thirteen symbols. Unfortunately it is not practical
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Figure 6.5: Return map for 3 = 5.04

to follow k() for much more than seven symbols and an alternative method must be
used.

To check whether a type (a) or (b) homoclinic explosion occurs for 2.74 < 8 < 2.75
we consider two trajectories for 8 < §' and 8 > 3’ with 3 very close to 5. The first
trajectory is along the right-hand branch of the unstable manifold of the origin. This
is found using the same method that was used to produce Figure 6.1. We only need
to consider the right-hand branch since the left-hand branch is just the symmetric
image (found by replacing all the R’s with L’s and vice versa). The second trajectory
under consideration is started very close to the first but displaced a small distance

along the positive Z-axis. We also consider a small box around the origin enclosing
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(a) X-Z projection for § =2.74 (b) X-Z projection for § = 2.75

Figure 6.6: Change in behavior of the unstable manifold of the origin

the initial positions of both trajectories. Since the stable manifold of the origin looks
like a plane near the origin it divides this small box into two halves. The positions,
relative to the stable manifold of the origin, where these trajectories first leave and
re-enter the box depend on whether we have a type (a) or (b) homoclinic explosion
at B = 3’ where 2.74 < ' < 2.75. Both trajectories start to the right of the stable
manifold of the origin (X > 0) and may return to the top face of the box to the left
or right of the stable manifold of the origin.

For the type (a) homoclinic explosion the unstable manifold of the origin will
intersect the top face of the box on different sides of the stable manifold of the origin
for B above and below 3. However, the second trajectory will re-enter the box on -
the right-hand side, provided that /3 is close enough to 3.

For the type (b) homoclinic explosion the unstable manifold of the origin will
again re-enter the box on different sides of the stable manifold of the origin for 8

above and below 8’. The second trajectory will re-enter the box on the left-hand
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side, if 3 is close to 3.

It is simplest to view these two trajectories in the X-Z projection since the stable
manifold of the origin intersects the Z-axis. This means that, close to the origin, it is
only necessary to observe which side of the Z-axis these trajectories return to. These
projections are shown for both trajectories in Figures 6.7 and 6.8 and they clearly

show that the RL’-homoclinic explosion is of type (a).

1.5 } 1.5 T .\
o5 f Ty 05 ]
N0 ___._,—————/ N o _____’_//
05 F E 05 b
RE] L L L . L 45 L L L L -
-1.5 -1 05 0 0.5 1 1.5 1.5 -1 05 0 05 1 15
X X
(a) The unstable manifold of the origin (b) A trajectory with a small initial displace-

ment in the positive Z direction

Figure 6.7: The X-Z projection of two trajectories for § = 2.746050
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(a) The unstable manifold of the origin (b) A trajectory with a small initial displace-

ment in the positive Z direction

Figure 6.8: The X-Z projection of two trajectories for § = 2.746051
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This is not unexpected since type (b) explosions can only occur for values of the
control parameters that produce period doubling windows. For the classic choice of
the Lorenz parameters with A = 3.2 and 0 < B < 8.0 there are no period doubling
windows present [29]. Furthermore, this explosion is proceeding in the direction that
removes an invariant set. As J is increased, k() changes in the reverse direction as

shown in equation (6.1)

TSSSSS..... —» TTTTTT.....

The result is that the period six UPQ’s, RL%, and it’s symmetric image, LR3, are

removed from the strange attractor by the homoclinic explosion at = 2.75.

6.2.3 Homoclinic Explosions in the Range 0 < < 8.0

Each homoclinic explosion, associated with a homoclinic orbit up to period six, may
be found by following changes in k(3) if the sequence is known up to the seventh
symbol. The homoclinic explosions that occur for 0 < 8 < 8.0 are shown in Table
6.1. All of these are type (a) homoclinic explosions.

By analyzing each change in k(B) in the same way as Section 6.2.2, it was found
that the first four explosions listed in Table 6.1 are proceeding in the direction that
removes a strange invariant set. The subsequent four explosions are proceeding in the
direction that produces a strange invariant set. This means that UPQO’s, with period
of six or less, are removed from the strange attractor for § < 6.98 and added back to

the strange attractor for g > 6.98.
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Table 6.1: A list of numerically computed values of k(/3)

B k(B) | Explosion
0 RLS
RL?
2.75 | RL°R
RL*
3.52 | RLARL
RL*R
460 | RL°*RR
RL3
5.03 | RL3RL?
RL?
6.98 | RL*R?
RL*R
7.18 | RL*RL
RL*
758 | RL°R
RL?
7.76 RIS

6.2.4 The RL?*-Homoclinic Explosion

We wish to focus on the RL3-homoclinic explosion for two reasons. Firstly, it was this
periodic orbit that was found to “disappear” for a range of control parameter values
in the strange attractor. Secondly, the topological period of this homoclinic explosion
is low enough to be verified against the expected behavior given by Equation (6.1).
We noted in Section 4.3 that not all surrogate UPQO’s could be found by the
method of close returns. More specifically, certain low period surrogates could only
be found for a range of the control parameter, 5. The lowest period orbits to exhibit
this behavior were the non-symmetric period four orbits, LR® and RL3. Surrogates

for these particular orbits could only be found in the range 0 < 8 < 4.6 and 7.22 <

CHAPTER 6: THE MissiNG ORBITS AND HOMOCLINIC EXPLOSIONS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

B < 8.0. Table 6.1 shows that there is a RL3-homoclinic explosion at § =~ 5.03
that removes a strange invariant set. There is another RL3-homoclinic explosion at
B = 6.98 that produces a strange invariant set. It is now clear why no surrogates for
the non-symmetric period four orbits could be found in the range 5.03 < 3 < 6.98.
The first RL3-homoclinic explosion removes the RL? UPQ’s from the strange attractor
(and it’s symmetric image RL? likewise). The second RL3-homoclinic explosion re-
introduces the non-symmetric period four UPO’s into the strange attractor.

We stated in Section 6.2.3 that all the homoclinic explosions listed in Table 6.1 are
type (a). This was confirmed in the same way as for the RL5-homoclinic explosion
in Section 6.2.2.

The change in k(8) is identical for type (a) and (b) RL3-homoclinic explosions if
only seven symbols are used. To distinguish between the two types using the symbolic
sequence requires a description with nine symbols. The symbolic sequence, k(3), was
calculated numerically for 8 = 5.02793 and S = 5.02794, up to nine symbols. The

two sequences are given below

B = 5.02793 k(B) = RL*R’L

B = 5.02794 k(8) = RL*RL*R

To verify that the RL3-homoclinic explosion is type (a) we make the following

substitutions into equation (6.1), T=RL? and S=LR3. This substitution results in a
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change in the first nine symbols of k(3) given by

RI*RL’R = RI*LR’L

which confirms that the first RL3-homoclinic explosion is type (a) proceeding in the

direction that removes a strange invariant set.

6.3 Remarks

In fact, there is no need to restrict this analysis to the range 0 < 8 < 8.0. Applying
the same approach described in Section 6.2 we find a homoclinic explosion for § = 9.34
that is associated with the two period one orbits L and R. This is once again a type
(a) homoclinic explosion but it is proceeding in the direction that removes a strange
invariant set. This orbit is not present in the original strange attractor for 5 = 0 but
is created in a Hopf bifurcation at 8 ~ 6.4.

The sequence of homoclinic explosions observed in the strange attractor generated
by Equations (3.27) is analogous to the sequence observed in the Lorenz attractor.
As j is increased from zero these bifurcations remove periodic orbits from the strange
attractor. As the control parameter is increased further these orbits are recreated, in
the reverse order, by homoclinic explosions. This sequence is shown in Table 6.1 for

UPQ’s up to period six.
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Chapter 7: A Higher Dimensional Linking Integral

A higher dimensional linking integral has recently been introduced by Shonkwiler and
Vela-Vick [1]. Their theorem gives an explicit linking integral for “visible hypersur-
faces”. The term visible means that there is some point from which all rays intersect
a manifold, at most, one time. As stated previously, the UPQO’s in our strange at-
tractor, in R*, lie on some lower dimensional manifold, since D; < 3. By treating
this manifold as a hypersurface, in the ambient four-dimensional space, we can apply
the higher dimensional linking integral provided that we can show this manifold is

visible.

7.1 Finding a visible point

In order to show whether the strange attractor is visible from a particular point it is
useful to calculate the minimum distance from each point along the ray to the strange
attractor. A plot of this minimum distance, as a function of distance along the ray,
will show a single minimum if it intersects the strange attractor only once. Such a
plot is shown in Figure 7.1 for six rays originating from the point (0,0, 200, 0).

For the point chosen in Figure 7.1, the strange attractor was shown to be visible
for 1000 rays that spanned the diameter of the attractor. Each ray contained 500
points and the minimum distance was calculated from 400,000 sampled points on the
strange attractor. The plot for each individual ray showed at most, one minimum,

indicating that no more than one intersection took place. This result shows that the
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Figure 7.1: The minimum distance between rays originating from (0,0, 200, 0)
and 400,000 sampled points on the strange attractor, as a function of the Z-
coordinate, for g = 0.

strange attractor is visible from the point (0, 0,200, 0).

7.2 Computation of the linking number

The linking integral for visible hypersurfaces derived in [1] is

1 Q)
— i 1
Lk(K,L) oy /KXL |x|’“+lly|l+1sin“a[x’dx’y’dy] (7.1)
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where K* and L! are submanifolds of a visible hypersurface M™ C R"*! with k+1 =
n — 1 and,

Qi) = / sin (0 — ) sin' 0 df (7.2)
[

=«

Here a(z,y) is the angle between z € K and y € L thought of as vectors in R,

_ Ox ox oy ay
[z,dz,y,dy] = det (x, 681,...,—88—k,y, i Btl) ds dt (7.3)

For the case of a three-dimensional visible manifold in R*, each submanifold, K

and L, the UPO’s, are one-dimensional. The linking integral formula in this case is

1 Qi) or Oy
Lk(K,L) = — A Sl S g _
WD =5 /KxL(|x12|y|2sm3a AT R

with

Qia) = /; sin(f — «) sin 0 df (7.5)

=a

Here K and L are the UPO’s lying on the visible manifold. These two closed
orbits are parametrized by s and t. The angle a is between x and y which are
position vectors for points on each of the closed orbits. %”—s”- and % are tangent vectors
to each of the closed orbits at the points z(s) and y(t).

Using Equation (7.4) the four-dimensional linking integral was computed for UPO’s
up to period four and these are shown in Table 7.1. The linking number was com-
puted for a range of control parameter values, 0 < § < 8, and the values shown in

Table 7.1 are the averages over this range. Although linking numbers are integer val-
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ued, here they are given to two decimal places to give an indication of the numerical
error associated with the computation. By comparison with Table 5.2 we can see
that these linking numbers are consistent with the branched manifold for the Lorenz
system with inversion symmetry. All linking numbers in this table varied within 0.05

of the nearest integer value for all values of 3.

Table 7.1: Averaged linking integral values for UPO’s lying on a visible hyper-
surface.

LR LLR LRR LLLR LRRR LLRR

LR - 0.02 -0.01 0.02 -0.01 0.01
LLR 0.02 - 0.04 -099 -0.02 -0.97
LRR |-0.01 0.04 - 0.04 0.92 1.00
LLLR | 002 -0.99 0.04 - -0.04 -1.01
LRRR |{-0.01 -0.02 092 -0.04 - 1.02

LLRR | 0.01 -097 1.00 -1.01 1.02 -

The four-dimensional linking integral was also used to calculate the linking num-
bers for the period five UPO’s. The results were consistent with the values obtained
in the (X,Y,U) projection for 3 > 1.6 and exhibited a change in sign as the control
parameter ( was varied. For the visible point found in Section 7.1 the higher dimen-
sional was equivalent to the Gauss linking integral, Equation (2.2), in the (X,Y,U)

subspace.

7.3 Summary

In this chapter we have determined the linking numbers for pairs of UPQO’s, Table

7.1, using a higher dimensional linking integral. This required the determination of a
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visible point and, for this point, the linking numbers obtained are the same as for the
(X,Y,U) projection in Section 5.2. These linking numbers were found to change as
the control parameter was increased over the range 0 < 3 < 8. The results from this
chapter, along with chapter 5, motivate an alternative approach to determining the
organization of the UPQ’s through the use of dimensionality reduction techniques.
This will be addressed in the next chapter where several algorithms for dimension

reduction will be reviewed and compared.
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Chapter 8: Review of Dimensionality Reduction Techniques

Dimensionality reduction techniques have been developed to find low dimensional
structure within high dimensional data sets. More specifically, for a data set consisting
of N vectors, each with D components, the points in the data set may lie on or near to
a manifold of dimension d (where d < D). Dimensionality reduction algorithms find
a d-dimensional representation that best preserves certain geometric properties of the
data. The problem of finding lower dimensional structure in a high-dimensional data
sct is a common problem in many fields of rescarch. In recent years these techniques
have become widely used in a variety of fields. This wide variety of examples include
molecular modeling [30], gene expression analysis [31], sound source localization [32]
and dynamical systems [33].

In this chapter we will review some of the most popular dimensionality reduction
techniques. We begin with the classical methods of the field that are essentially linear
in nature. In section 8.2 we give an overview of three different nonlinear techniques.
These are isometric feature mapping (Isomap) [$4], locally linear embedding (LLE)
[35, 36] and Laplacian eigenmaps [37]. We compare each of these nonlinear methods in

section 8.3 by considering both the effectiveness and the efficiency of the algorithms.

8.1 Classical Methods

The classical methods in this field include principal component analysis (PCA) [38],

linear discriminant analysis (LDA) [39, 40], independent component analysis (ICA)
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[41, 42] and metric multi-dimensional scaling (MDS) [13]. These techniques are linear
in nature and nonlinear structure within a data set is essentially invisible to these
methods. To demonstrate this we consider one of the most commonly used methods,

PCA, as applied to a nonlinear manifold.

8.1.1 Principal Component Analysis (PCA)

PCA [33] is a transformation that takes a set of IV data points x; € RP and projects
them to a set of points y; € R with maximal variance in the subspace. If the input
data set is centered on the origin (which can be obtained by subtracting the mean
for each direction from the components of every vector, x;) then the basis vectors of
the subspace can be determined by finding the eigenvectors of the covariance matrix

defined by

D
1
Cij = Yv— ; TikZjk (8.1)

where z;; denotes the j™ component of x;. Denoting this N x D data matrix by X

we have

C-= (%) XX (8.2)

The output data set, y;, is obtained from the eigenvectors of C corresponding to
the d largest eigenvalues.
Applying PCA to the S-shaped manifold demonstrates how the algorithm is in-

capable of detecting the nonlinear structure. Figure 8.1 shows how regions that are

CHAPTER & REVIEW OF DIMENSIONALITY REDUCTION TECHNIQUES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61

separated on the manifold are brought closer together and overlap in the lower di-

mensional projected subspace.

(a) S-Curve (b) PCA (c) MDS

Figure 8.1: PCA and MDS applied to 2000 points sampled from the S-shaped
manifold. Overlapping of the data points occurs near edges of the data set in two
dimensions as the linear nature of these algorithms fail to preserve the geometry
of the underlying manifold.

8.1.2 Metric Multidimensional Scaling (MDS)

MDS [i3] is a dimensionality reduction technique that aims to preserve pairwise
distances between data points. We are giving an overview of this technique not only
because it is commonly used as a dimensionality reduction tool in its own right but
also due to the fact that it is an integral component of other nonlinear algorithms
such as Isomap.

Here we will be reviewing classical MDS which means these pairwise distances are
Euclidean. The classical MDS algorithm takes as input a set of N pairwise distances
and generates an output configuration in d-dimensional Euclidean space. There are

four main steps to the algorithm.

1. Calculate the N x N matrix of squared distances, A.
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2. Apply the double centering matrix —%CAC =B, where C=1 - (%) 1-17

3. Compute the d largest eigenvalues, A;...A\qs and the corresponding eigenvectors,

ep...ey, of B

4. Find a d-dimensional configuration from X = A2E, where, A is the diagonal

matrix of the d eigenvalues of B and E is the matrix of the d eigenvectors of B.

The result of applying MDS to 2000 points sampled from the S-shaped manifold
is shown in Figure 8.1. The main difference between MDS and PCA is that MDS
only required the pairwise distances as input while PCA performs a singular valued
decomposition on the covariance matrix which is defined in terms of the vectors,
x; € R,

All of the classical techniques are closely related and give similar results to PCA
when applied to data lying on a nonlinear manifold. This highlights the need for
nonlinear techniques and in recent years a plethora of methods have been developed.
Some of these build on the linear methods, such as isometric feature mapping (Isomap)
[44], which is an extension of classical multidimensional scaling [43], whilst others
adopt an entirely new approach. Some of the more popular techniques include the
Isomap algorithm [14]; locally linear embedding [36]; Laplacian eigenmaps [37] and
diffusion maps [45]. They were developed for manifold learning, in the machine
learning community, with applications such as facial recognition and handwritten

character recognition.
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8.2 Nonlinear Methods

8.2.1 Isometric Feature Mapping (Isomap)

Isomap [31] is an extension of MDS that uses approximations of geodesics rather than
the Buclidean distances that are used in classical MDS. The approximate geodesics
are calculated from the shortest paths between points in a neighborhood graph. The
Isomap algorithm aims to preserve pairwise geodesic distances over the manifold.

There are three main steps

1. Construct a neighborhood graph
2. Compute shortest paths

3. Construct a d-dimensional embedding

In the first step nearest neighbors are assigned to each data point. This is based on
Euclidean distances dg() between points in the D dimensional input space. One com-
mon method is to choose the K nearest neighbors based on the distance dz(.f). Once
neighbors have been assigned to each data point a neighborhood graph is constructed.
This is a weighted graph where the weights of the edges for neighboring points are
equal to dg().

In the second step, shortest distances are computed on the weighted graph for all
of the data points x;. These distances are used to approximate the geodesic distances
between the data points over a submanifold. The shortest paths can be calculated

using methods such as Dijkstra’s algorithm [46] or Floyd’s algorithm [47].
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The final step is to use the shortest path distances as inputs to the MDS algorithm,
Section 8.1.2. This results in a d-dimensional representation of the data set that best

preserves the approximate geodesic distances.

8.2.2 Locally Linear Embedding (LLE)

In LLE [35, 3] it is assumed that a data set in a D-dimensional space lie on a manifold
of lower dimension, d, that is locally linear. Each data point is characterized by a
set of weights that best reconstruct that point through a linear combination of its
neighbors. The key idea is that these reconstruction weights depend locally on the
geometry of the manifold and the same weights are used to construct a d-dimensional

embedding of the data set. The LLE algorithm has three main steps

1. Assign neighbors to each data point in the original data set.

2. Compute the weights that best linearly reconstruct each data point from its

neighbors.

3. Find the vectors in the low-dimensional space by fixing the weights to be those
found in step 2 and minimizing the cost function.
The LLE algorithm will be described in detail in Section 9.1.

8.2.3 Laplacian Eigenmaps

The Laplacian eigenmap method [47] is similar to LLE but aims to preserve prox-
imity relations rather than reconstruction weights. The first step is the same as for

Isomap or LLE and involves assigning K nearest neighbors to each data point. As
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with Isomap, an undirected graph is generated with N nodes representing the input
data points x;. The weights for each edge of the graph are typically chosen to be a
constant or computed by an exponential decay function such as a heat kernel [49] or
Gaussian kernel [50]. The low dimensional data points, y;, are found by minimizing

the following cost function

N N
€Lap = Z Z I/Vzglyz - yj|2 (83)

i=1 j=1

where w;; are the weights of edges in the neighborhood graph. The cost function
is minimized subject to constraints that the d-dimensional vectors, y;, are centered
and have unit covariance. This particular cost function aims to preserve proximity
relations by projecting nearby points in the original data set, as measured by the
weight matrix, to nearby points in R%.

The cost function, €4y, can be expressed in terms of a graph Laplacian 51,

L =D — W, where D is the diagonal weight matrix, Dy; = >, Wi;, by [51]

erap = Tr (Y'LY) (8.4)

and minimizing this cost function subject to the constraints, centering and unit co-
variance of the y;’s, is equivalent [52] to finding the d eigenvectors associated with

the d smallest nonzero eigenvalues of the generalized eigenvalue problem

Lv = ADv (8.5)
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8.3 Comparison of the Algorithms

Now that we have reviewed some of the most commonly used dimensionality reduction
techniques we will compare the results of each when applied to a set of data points in
three dimensions lying on a two dimensional manifold. This will allow visualization
of the results and, since the manifold which the data points lie on is known a priors,
the effectiveness of each algorithm at revealing the structure of the manifold can be
compared.

We begin with a data set sampled from the S-curve that was used in Section 8.1.1.
Applying the nonlinear techniques to this data set allows a comparison with the linear
methods, PCA and MDS, shown in Figure 8.1. Each algorithm, Isomap, LLE and
Laplacian eigenmaps, was applied to a set of 2000 points sampled from the S-curve,
shown in 8.1. We used the same number of nearest neighbors for each algorithm,
K =15, and the resulting two dimensional representations of the data set are shown

in Figure 8.2.

(a) Locally Linear Embed- (b) Laplacian Eigenmap (c) Isomap
ding

Figure 8.2: Nonlinear dimensionality reduction algorithms applied to 2000
points sampled from the S-shaped manifold shown in Figure 8.1. Comparison
with Figure 8.1 shows the improved results in unfolding the two dimensional
manifold compared to the linear methods of PCA and metric MDS.
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The S-shaped manifold example shows how each of the nonlinear techniques can
represent the data points correctly in the lower dimensional space when the manifold
they are sampled from is curved in the higher dimensional space. Next we will test
each of the algorithms on a set of data points that are generated by a Gaussian
function. The lower dimensional manifold that these points lie on looks like a curved
surface in three dimensions. We will use an input data set consisting of 2000 points,

in this case the data points were generated from the following Gaussian function,

1 2 2
= (—z2-y?)/2 6
? (2#) ¢ (86)

by using 2000 pairs of random numbers, between zero and one, for the coordinates
and y. A useful feature of the data generated in this way is that it mimics non-uniform
sampling of a lower dimensional manifold. This can be seen in Figure 8.3 where there
is a high density of points for large z and the data set becomes sparse for lower values
of z. This input data set is shown alongside the two dimensional representation
obtained by the Laplacian eigenmap algorithm using 15 nearest neighbors, in Figure
8.3. The representations obtained by Isomap and LLE applied to the same input data
set, also using 15 nearest neighbors, are shown in Figure 8.4

It is clear from Figures 8.3 and 8.4 that the Laplacian eigenmap algorithm does
not represent the data set well in two dimensions. The reason for this, as Belkin and
Niyogi have stated [13], is that there is an implicit assumption of uniform sampling of
data points on the manifold in the Laplacian eigenmap algorithm. For data sets where

the points are approximately uniform over an underlying manifold the algorithm can
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(a) Gaussian Data Set (b) Laplacian Eigenmap

Figure 8.3: The Laplacian eigenmap algorithm applied to 2000 points obtained
using a Gaussian function, Equation 8.6, to simulate non-uniform sampling of a
low dimensional manifold, 15 nearest neighbors were used.

(a) Isomap (b) LLE

Figure 8.4: The two dimensional representations of the Gaussian data set from
Figure 8.3 obtained by Isomap and Locally linear embedding both using 15 nearest
neighbors.
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produce a faithful representation of the data in the lower dimensional space. This was
observed for the S-curve example in Figure 8.2. The result from the Gaussian data
set in Figure 8.3 shows that the uniformity of the data set over the manifold is an
important consideration when determining which dimensionality reduction technique
to apply.

Another important consideration is the run time for each of the algorithms. This
can vary considerably amongst the different methods. If a dimensionality reduction
technique is to be applied to surrogate UPQ’s in a strange attractor they will have
to be run numerous times. This is because a lower dimensional representation will
be required for several pairs of surrogate UPQO’s to construct a table of their linking
numbers. Furthermore, this must be repeated as the control parameter is varied for
the range 0 < 8 < 8. This will be explained further in Chapter 9.

A comparison of the run times for the different algorithms was made by apply-
ing each method to the same input data set and using the same number of nearest
neighbors. The results are shown in Table 8.1, which shows the run time for each
algorithm when applied to 2000 points sampled from the S-shaped manifold shown in
Figure 8.1. PCA was the fastest procedure and the times normalized to this value are
given for ease of comparison. Some other techniques that were not discussed in this
section have been included to give a better sense of typical run times. These addi-
tional methods are diffusion maps [15], local tangent space alignment (LTSA) [53, 54],
and Hessian locally linear embedding (HLLE) [55, 56]. Each of these algorithms were
implemented using codes publicly available from the authors of the original papers.

The algorithm that stands out the most from this list is Isomap, which takes
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considerably longer to run than any of the other techniques. This is mainly due to
the second step of the algorithm, see Section 8.2.1, which involves calculating the
approximate geodesic distances between points and also because it uses MDS which
was one of the slowest algorithms. This can prohibit the use of Isomap for large data
sets although there have been several modified versions of the algorithm developed

to help address this issue [57-54].

Table 8.1: Comparison of run times for several dimensionality reduction tech-
niques when applied to the S-shaped manifold with 2000 points using 15 nearest

neighbors
Algorithm Time (s) | Scaled Time (¢/tpca)
PCA 0.39 1
Laplacian Eigenmap 2.43 6.23
Diffusion Map 3.25 8.33
LLE 4.61 11.90
LTSA 6.97 17.87
Hessian LLE 61.50 157.69
MDS 96.66 247.85
Isomap 387.23 992.90

8.4 Summary

In this chapter we have reviewed several of the most popular dimensionality reduction
algorithms. The two classical techniques considered, PCA and MDS, are closely
related but differ in the format of the input data sets. PCA is a very fast process that

can be used to quickly obtain a low dimensional representation of a data set that is
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essentially equivalent to a series of rotations and projections. MDS requires an input
data set consisting of pairwise distances rather than a set of coordinates. The linear
nature of these algorithms means that they are incapable of detecting the intrinsic
structure of a data set lying on a curved manifold. This was clearly demonstrated in
Figure 8.1 for data points sampled from a two dimensional S-shaped manifold in R3.

The nonlinear techniques that were discussed are Isomap, LLE and Laplacian
eigenmaps. An overview of each technique was given and the ability of these al-
gorithms to essentially unfold the S-shaped manifold was shown in Figure 8.2. A
comparison of the algorithms was made, in Section 8.3, that focused on two main at-
tributes. These were the ability of the algorithms to deal with non-uniformly sampled
data and the computational efficiency of each algorithm. Isomap and LLE were both
successful in revealing the intrinsic structure of a two dimensional Gaussian data set
in Figure 8.4. However, the Isomap was found to run much slower on these data sets
than the LLE algorithm.

The motivation for comparing the speed of the algorithms and the ability to
handle non-uniformly sampled data comes from thinking about the surrogate UPO’s
in the EMR strange attractor. We would like to be able to apply a dimensionality
reduction technique to these surrogate orbits, since they are assumed to lie in a three
dimensional manifold in R*. This would allow the computation of Gauss linking
numbers for pairs of orbits. These computations must be repeated for many pairs
of orbits to construct a table of linking numbers. Furthermore, this table should
be computed over the control parameter range 0 < 3 < 8 to check whether the

linking numbers change value. Since a repeated use of the dimensionality reduction
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is required the efficiency of the algorithm is an important factor. Also, there is no
reason to assume that data points from a surrogate UPO, or points sampled from
the strange attractor, should be spread uniformly in an underlying three dimensional
manifold. Since LLE was capable of dealing with non-uniformly sampled data points
and has a reasonable run time, see Table 8.1, we choose this method to find a three

dimensional representation of surrogate UPO’s in Chapter 9.
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Chapter 9: Locally Linear Embedding

In this chapter we begin by explaining the LLE algorithm in detail. The algorithm
requires two input parameters, the embedding dimension and the number of nearest
neighbors. In Section 9.2 we describe the specific regularization required when the
embedding dimension is less than the number of nearest neighbors. In Section 9.3 we
give the procedure for preparing the data set in the higher dimensional space, R In
Section 9.4 the remaining input to the algorithm is determined, namely the number
of nearest neighbors, K. Finally the LLE algorithm is applied to the UPO’s and a

table their linking numbers is computed in Section 9.5.

9.1 The Algorithm

LLE assumes that each data point in a high dimensional space lies on a lower dimen-
sional nonlinear manifold [35]. The input to the algorithm is a set of N vectors in RP
that lie on a manifold of dimension d, with d < D. Furthermore, it is assumed that
each data point and its neighbors lie close to a locally linear patch of the manifold.
The algorithm aims to reconstruct the original data set in a lower dimensional space
that best preserves the local geometry of every neighborhood and outputs a set of N

vectors in RY.

There are three main steps to the algorithm:

1. Assign neighbors to each data point in the original data set.
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2. Compute the weights that best linearly reconstruct each data point from its

neighbors.

3. Find the vectors in the low-dimensional space by fixing the weights to be those

found in step 2 and minimizing the cost function.

Each of these steps will now be explained in more detail.

Assigning the nearest neighbors to each data point usually involves one of two
methods. This is to either take the K-nearest data points based on Euclidean dis-
tance (K-nearest neighbors) or to choose the neighbors contained in a ball of fixed
radius, ¢, centered on each data point (c-ball). In either case, choosing the number
of neighbors to properly reconstruct each data point may be difficult [60]. If the
number of neighbors is too small then the local geometry is not well characterized by
the weights and if it is too large then the assumption of a locally linear neighborhood
is violated. We will consider the K-nearest neighbors based on Euclidean distance.
The choice of the value of K will be discussed in Section 9.4. The exact relation be-
tween K and the faithfulness of the resulting embedding remains an important open
question [35].

Consider a data set consisting of N points. By thinking of each data point in the
higher-dimensional space as a vector, X}-, each can be reconstructed through a linear
combination of its neighbors. The error in this reconstruction is measured by the cost

function,

N . N 2
cw)=S"|%- 3 Wijx,-] -» (9.1)

=1 J=Lj#i
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which adds up the squared distances between all the data points and their reconstruc-
tions. The weights, W;;, are found by minimizing this cost function subject to two
constraints. The first is that each data point is reconstructed only from its neighbors,

ie. W;; =0if X ; is not a neighbor of )Z, and W;; = 0. The second constraint is

> wy=1 (9.2)

which imposes translational invariance. This can be seen by considering the effect
of adding a constant vector, c, to X, and each of its neighbors. The cost function

becomes

(W) = \2 (9.3)
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which is the same as Equation 9.1 showing that the cost function is translation in-
variant under the constraint given by Equation 9.2.
The third step also involves minimization of the cost function. However, this time

the weights are fixed and the vectors are found that minimize the reconstruction error.

CHAPTER 9: LocALLY LINEAR EMBEDDING

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

The weights from step two are used in minimizing the embedding cost function,

"<11
“<1

o(Y) = (9.4)

uMz

where Y; are the low dimensional embedding vectors.
The minimization is performed subject to two constraints. The first constraint
removes the translational degree of freedom such that the output vectors, Y;-, are

centered on the origin,

’“<1

(9.5)

The embedding cost function is unaffected by a rotation of the vectors, Y;. The second
constraint removes the rotational degree of freedom such that the output vectors have

unit covariance,

N

1 - o

N E Yz‘Y;T =1y (9-6)
i=1

The embedding cost function Equation (9.4) can be rewritten in terms of a cost

matrix,

N

B(Y) =ZiMw(Y Y;) ' (9.7)

i=1 j=1
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where the cost matrix is given by,

N
Mij = 65 — Wij — Wy + Z WiiWi; (9.8)
k=1

Minimizing Equation (9.4) is equivalent to finding the eigenvectors corresponding to
the d + 1 lowest eigenvalues of the cost matrix, since the eigenvector corresponding to
eigenvalue zero, (1,1, ...,1), represents a free translation (Goldstone mode [61]). This
equivalence is a form of the Rayleigh-Ritz theorem [62].

The result of applying this algorithm to points sampled from a two dimensional

manifold in R3 is shown in Figure 9.1.

Figure 9.1: LLE applied to the two dimensional S-shaped manifold. 1000 points
were sampled from the known manifold and the resulting embedding was com-
puted using 12 nearest neighbors.

The S-shaped manifold is a common example used for testing dimensionality re-
duction techniques [i3]. In this case 1000 points were sampled from the manifold
and 12 nearest neighbors were used to compute the two dimensional embedding. The
rightmost image in Figure 9.1 shows how the LLE algorithm is capable of unfolding

the data set to reveal the intrinsic two dimensional structure. LLE has also been

successfully applied to other manifolds, such as the “Swiss Roll” manifold [61]. Some
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example applications of LLE include analysis of data sets of hyperspectral images [65]
and articulated shape matching [64].

LLE aims to preserve intrinsic geometric properties of every neighborhood. These
are the intrinsic properties characterized by the reconstruction weights. These con-
strained weights, for any particular data point, are invariant to rotations, rescalings,
and translations of that data point and its neighbors. The algorithm is effective in
revealing global nonlinear structure through the local symmetries of linear reconstruc-
tions [3%]. The effectiveness depends on the two inputs to the algorithm, the number
of nearest neighbors and the embedding dimension. For problems where the data
points are assumed to lie on a nonlinear manifold of known dimension the important
question is: how does the choice of number of nearest neighbors affect the lower di-
mensional embedding? This will be addressed in section 9.5 where the algorithm will

be applied to orbits in R

9.2 K > D regularization

There is a subtlety that has been glossed over in the preceding section. In step 2 of
the LLE algorithm, where the cost function is minimized, it may be the case that
there is no unique solution. In fact, when the number of nearest neighbors is greater
than the dimension of the input vectors, K > D, the problem of minimizing (W)
in Equation (9.1) becomes ill-posed. The minimization problem is under-determined
since there are K unknown weights and D equations. One common way to regularize

such problems is through Tikhonov regularization [67]. This approach involves solving
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the following minimization problem

e-(W) =Z(X

i=1

N L2 N
=S WX +ad] Wé) (9.9)
J=1 J=1

where e,(W) is the regularized cost function and « > 0. The additional term « 3 W2
is known as a regularizer or penalty term and the original cost function is recovered
as a — 0.

The regularizer has the effect of penalizing the sum of the squared weights. In
other words, it favors weights that are uniformly distributed in magnitude. This can
be seen by considering the limit as o — oo. In this case, minimizing the cost function
amounts to minimizing the sum of the squared weights. Under the constraint given
by Equation (9.2), minimization will be achieved when all of the weights are equal in
magnitude.

Considering the regularized cost function for a particular point, X s, with K nearest

neighbors, Equation (9.9) can be rewritten as

K
“ta > W (9.10)

=1

K
5(” \Z X X

where the constraint imposed by Equation (9.2) has been utilized. In terms of the

local K x K Gram matrix given by

b= (X = X5).(Xs - X)) (9.11)
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this becomes

eD(W) = w] Giw; + aw] w; (9.12)

where w; is the K x 1 weight matrix. The regularized cost function can be minimized
under the constraint given by Equation (9.2) using a Lagrange multiplier, A. The

Lagrangian is given by

E(Wi, )\) = W;rGiWi -+ OZWzTWi — A(lTWi — 1) (913)

where 1 is a K x 1 matrix of all ones. Minimizing the Lagrangian with respect to w;

gives

(Gs + al)w; = -;-1 (9.14)

Solving for the reconstruction weight and choosing A such that the solution is nor-

malized gives

Wi = %(Gﬂral)'ll (9.15)

w;, = Zf:l (G + al);l-l (916)
an:l Zfz:l (G + aI)r—niz

The regularization is usually chosen such that & << 1. For example, Roweis and Saul
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[3%] recommend conditioning the Gram matrix in the following way

2

. ) A
Gl Gy + (‘f(‘) Te(G) (9.17)

with A2 << 1. This was the conditioning used, with A% =1 x 1073, for the S-curve
example in Figure 9.1. This K > D regularization will also be implemented when
applying LLE to UPQ’s within the EMR attractor, (Chapter 3), since D = 4 and the

number of nearest neighbors used will always be greater than four.

9.3 Preparing the orbits

In order to apply LLE to these orbits we take not only the surrogates but also a set
of points sampled from the attractor that lie near to these orbits in R%. LLE does
not require a uniform sampling of points in the phase space. However, these sampled
points should be spread evenly across each of the orbits to reveal the geometry of the
underlying manifold that the attractor is assumed to lie in. The sampled points are
found by integrating from an initial condition and recording the coordinates each time
the trajectory passes within a given distance of the surrogate orbits. We denote this
threshold distance between the trajectory and surrogate orbit by d;,. The closeness
condition is not checked at every time step because this would cause clumping of
the sampled points. Instead the distance between the integrated trajectory and the
orbits is checked at regular time intervals, denoted by At. This results in a more
even spread of the sampled data points along the orbits. The data set generated in

this way contains two surrogate orbits, since we wish to calculate linking numbers for
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pairs of orbits, along with the points sampled from the attractor.

As an example, we will consider the two UPO’s LR and LR? for B = 5.0. They
contain 347 and 556 points respectively. The points sampled from the attractor
were obtained by integrating from an initial point within the basin of attraction
(z,y, z,u) = (11.67,22.56,28.00,1.36) for 300 seconds with a time step of d¢ = 0.01.
As noted by Schuon et al [3¥] and Kim & Finkel [(i5], the CPU power and memory
requirements can be quite high when applying LLE to large data sets. For this reason
the final data set was kept below 5000 points. In this case it was found that a closeness
condition of &, = 1.0 and time interval, At = 5, gave 2851 sampled points. A plot of

these sampled points with the two surrogate periodic orbits is shown in Figure 9.2.
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Figure 9.2: The Y-Z projection of two surrogate UPO’s, LR and LRR, for 8 =
5.0, with 2851 points sampled from the underlying three-dimensional manifold.
The orbit LR consists of 347 points and the orbit LRR consists of 556 points.
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9.4 Choice of nearest neighbors

Implementing the LLE algorithm requires only two input parameters: the embedding
dimension, d, and the number of nearest neighbors, K. The manifold containing
the attractor is assumed to be three-dimensional, since Dy = 2.2, so we set d = 3.
However the choice of the value of K is not so straightforward. If K is too small
then the geometry of the manifold is not recovered due to undersampling. If K is too
large then the assumption that the neighborhood is locally linear would be violated.
The aim is to find a range of K values over which the embedding remains stable.
Figures 9.3, 9.4 and 9.5 show the orbit LLRR embedded in three dimensions for

three different values of K.

Figure 9.3: Locally linear embedding of the orbit LLRR for K = 10.
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Figure 9.4: Locally linear embedding of the orbit LLRR for K = 20.

In each case, the points sampled from the strange attractor were removed from the
data set after the LLE algorithm had been applied. Then, a specific orientation was
chosen in the three-dimensional space; this is possible because LLE is invariant up to
a rotation. Three dimensional representations with different parity are isotopic in R*
[69]. To ensure the orbits were projected to the lower dimension in a consistent way,
the following orientation convention was adopted. For each orbit, the point closest
to the component R of the Poincaré section (Figure 4.1) was determined. The orbit
was then rotated so that this point was on the z-axis with the tangent vector at this
point directed with components in the positive z, y and z directions. Orienting each

orbit in the same sense allowed each of the embeddings to be compared to find the
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Figure 9.5: Locally linear embedding of the orbit LLRR for K = 30.

range of K values over which the embedding remained stable.

9.5 Results and comparison with projection methods

Many surrogate UPO’s were found in R* using the method of close returns described in
Section 4.1. Application of LLE to pairs of these surrogates should yield an embedding
in three dimensions where linking numbers can be computed to reveal the organization
of these UPQ’s in this lower dimensional space.

As an example, we will consider the two UPO’s LR and L?R?. In order to apply
LLE to these UPQ’s we take not only the surrogates but also a set of points sampled

from the attractor that lie near to these orbits. This data set is generated using the
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procedure described in Section 9.3. A sufficient number of sampled points will supply
the nearest neighbors required to reveal the geometry of the underlying manifold that
the attractor is assumed to lie in. This manifold is assumed to be three dimensional
so, with the target dimension set to d = 3, there is only one remaining input to the
algorithm - the number of nearest neighbors. From inspection of the embedded orbits
it was found that a K value in the range 16-22 provided the best embeddings. The
embedding of the orbits LR and L2R? into R? using 18 nearest neighbors is shown in

Figure 9.6.
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Figure 9.6: Two UPO’s LR and L?R? for 8 = 6.99 embedded in R® using
K =20.

The linking numbers for pairs of orbits, in the three-dimensional embedding, were

computed by counting crossings in the z-z projection. These linking numbers were

CHAPTER 9: LocALLY LINEAR EMBEDDING

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



87

computed for all values of K in the range 5 < K < 40. For the lowest values of K the
linking numbers were found to vary depending on the number of nearest neighbors
used. This type of error should be expected from inspection of Figure 9.3. However,
for all pairs of orbits, the linking number was found to remain the same for all values
of K above a certain threshold value. For all the orbits studied here, K = 20 proved
to be a sufficient number of nearest neighbors since it was contained within the range
over which the linking number remained constant.

The results are shown in Table 9.1, for all UPO’s up to period five. These results
are consistent with those for the Lorenz branched manifold with rotation symmetry.
The most important aspect of these results is that the table of linking numbers
remains the same for the entire range of control parameter, 0 < 5 < 8.0. For the
orbits involved in homoclinic bifurcations, (indicated by a *), the linking numbers
were the same before and after they were removed and then re-introduced to the
strange attractor. This is under the previously mentioned assumption that there
is a three-dimensional manifold in which the attractor may be embedded. No self

intersections were observed as with the simple projections discussed in Chapter 5.
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Table 9.1: The linking numbers of unstable periodic orbits that were embedded
using LLE. * indicates orbits involved in homoclinic bifurcations, these linking
numbers were only calculated for control parameter values where the orbits where
present in the strange attractor.

LR LLR LRR LLLRx LRRR+x LLRR LLLLR+ LLLRR LLRRR LLRLR LRRLR LRRRR«
LR - 1 1 1 1 2 1 2 2 2 2 1
LLR 1 - 1 2 1 2 2 3 2 3 2 1
LRR 1 1 - 1 2 2 1 2 3 2 3 2
LLLRx 1 2 1 - 1 2 3 3 2 3 2 1
LRRRx 1 1 2 1 - 2 1 2 3 2 3 3
LLRR 2 2 2 2 2 - 2 3 3 4 4 2
LLLLR* 1 2 1 3 1 2 - 3 2 3 2 1
LLLRR 2 3 2 3 2 3 3 - 3 5 4 2
LLRRR 2 2 3 2 3 3 2 3 - 4 5 3
LLRLR 2 3 2 3 2 4 3 5 4 4 2
LRRLR 2 2 3 2 3 4 2 4 5 4 - 3
LRRRR=| 1 1 2 1 3 2 1 2 3 3 -
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Chapter 10: Conclusion

A topological analysis program exists for three dimensional strange attractors but
there are no analogous methods when the dimension is higher than three. We show,
for the first time, how the current program can be extended to a strange attractor
in R%. This extension is possible for strange attractors in higher dimensional spaces
when the attractor is essentially three dimensional, with Lyapunov dimension that
satisfies, Dy < 3.

We have analyzed a strange attractor generated by the four dimensional dynamical
system that was introduced in Chapter 3. This analysis was conducted in three
different ways, each with the goal of determining the topological organization of the

UPQ’s within the attractor. The three different methods are

1. Projections of the strange attractor into three dimensional subspaces
2. Using a four dimensional linking integral

3. Applying a dimensionality reduction technique (LLE) to surrogate UPO’s

A previous study [16] on projections to the (X,Y, Z) and (X,Y,U) subspaces claims
that the (X,Y,U) projection is an embedding of the attractor for all values of the
control parameter in the range 0 < 3 < 8. We were able to show that this is not
the case by computing the linking numbers for the period five UPO’s. The linking

numbers for these orbits changed as the control parameter, 3, was varied. For § > 1.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

we found that this projection did provide an embedding that was consistent with the
Lorenz branched manifold with inversion symmetry but for g < 1.5 an embedding no
longer existed. Near § = 1.5, self-intersections occurred as the uniqueness principle
was violated in this projection. This was confirmed by calculating the minimum
distance between surrogate UPQ’s for 0 < 8 < 8, this result is shown in Figure 5.4.
In the (X, Y, Z) projection our results agreed with the previous study. This projection
provides an embedding for low values of 3 that is consistent with a Lorenz branched
manifold with rotational symmetry. As 3 is increased the linking numbers change
through integer steps as self intersections of the attractor occur. This occurs until a
value of /3 is reached where the attractor has essentially turned inside out and the
linking numbers become the negative of those for low values of 5. At this point the
table of linking numbers is consistent with a branched manifold that is the mirror
image of that for the low 3 regime.

During the analysis of projections to three-dimensional subspaces it was discovered
that not all of the low period UPO’s could be found over the entire range, 0 < 8 < 8,
by the method of close returns. When this occurred, the surrogates could be found
for low values of 3 and again for higher values, but there was an intermediate range
of A values for which no surrogates could be found. This behavior was explained in
Chapter 6 by analyzing the sequence of homoclinic bifurcations for this attractor. As
the control parameter, 3, is increased, some of the UPO’s are first removed and then
re-introduced back into the attractor by the sequence of homoclinic bifurcations. The
sequence was determined for orbits up to period six and is given in Table 6.1.

The second technique involved a higher dimensional linking integral that has re-
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cently been introduced [!]. The linking integral applies to the case of visible hyper-
surfaces. We were able to find a visible point, in R?, by calculating the minimum
distance between rays emanating from that point and the strange attractor. Linking
numbers for UPQ’s are commonly computed by the Gauss integral, in three dimen-
sions, but never for dimension greater than three. By locating the visible point in
R* we were able to compute the linking numbers for pairs of UPO’s using the four
dimensional linking integral. The table of linking numbers calculated in this new way
is presented in Table 7.1.

In Chapter 8 we reviewed several of the most popular dimensionality reduction
techniques. The nonlinear methods were tested on sample data sets and compared in
terms of their efficiency and ability to handle non-uniform sampling. The results are
presented in Table 8.1. This comparison of the different methods highlighted three
key characteristics of the LLE algorithm. These were: (1) the ability of the algorithm
to reveal the structure of an underlying nonlinear manifold, as demonstrated by the
S-curve example, in Figure 8.2; (2) the successful representation of a non-uniformly
sampled data set; and (3) reasonable computational cost compared with other dimen-
sionality reduction techniques. For these reasons LLE was chosen for application to
the UPO’s in the strange attractor in R4.

In Chapter 9 we developed the method and procedures for applying the LLE algo-
rithm to UPQO’s in the strange attractor in R*. The dimensionality reduction of these
UPO’s was successful in revealing the underlying structure of the three dimensional
manifold that the attractor and its UPO’s lie in. This allowed the computation of

linking numbers for pairs of UPQO’s in the three dimensional representation. These
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calculations were stable over a range of the input parameter to the algorithm, the
number of nearest neighbors K. A table of linking numbers was constructed, Table
9.1, for all UPQ’s up to period five. The linking numbers in this table remained the
same for all values of the control parameter in the range 0 < 8 < 8. The branched
manifold consistent with this set of linking numbers is the Lorenz branched manifold
with rotation symmetry. This uniquely determines the organization of the UPQO’s
within this strange attractor.

So, where does this leave us? The problem of understanding strange attractors
in spaces of dimension greater than three remains unresolved. If the attractor has
Lyapunov dimension Dy, < 3 it ought to be possible to squeeze the attractor into a
three dimensional space, after which a topological analysis becomes possible. This
thesis describes one successful way to carry out this program.

A more sophisticated way would be to find a standard method (a ’machine’)
for constructing a three-dimensional inertial manifold or attracting manifold in RN
(N > 3) and a change of coordinates so that three of the coordinates describe the flow
in the three dimensional manifold and the remaining coordinate obeys an equation
describing the asymptotic approach of any initial condition to this manifold. Such
machinery exists to some extent in the theory of partial differential equations. Re-
grettably, it seems to be a hard problem to construct coordinate transformations for
finite sets of ordinary differential equations to put them into the canonical form of
a lower dimensional attracting manifold containing all of the interesting dynamics
and additional equations showing exponential relaxation to this attracting manifold.

If such a result could be constructed, and if the Lyapunov dimension of a strange
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attractor were confined to the range 2 < Dy < 3, the attracting manifold ought
to be three-dimensional, and it then ought to be possible to apply the methods of
topological analysis.

It is hoped that one does not have to wait too long for results of this nature to be

developed.
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An autonomous four-dimensional dynamical system is investigated through a topological
analysis. This system generates a chaotic attractor for the range of control parameters
studied and we determine the organization of the unstable periodic orbits (UPOs) asso-
ciated with the chaotic attractor. Surrogate UPOs were found in the four-dimensional
phase space and pairs of these orbits were embedded in three-dimensions using Locally
Linear Embedding. This is a dimensionality reduction technique recently developed in
the machine learning community. Embedding pairs of orbits allows the computation of
their linking numbers, a topological invariant. A table of linking numbers was computed
for a range of control parameter values which shows that the organization of the UPOs

is consistent with that of a Lorenz-type branched manifold with rotation symmetry.

Keywords: Unstable periodic orbit; locally linear embedding; linking number.

1. Introduction

Strange attractors in R3 are remarkably well understood because they may be classified through a topo-
logical analysis. This involves determining the organization of the unstable periodic orbits in the attractor
by computing linking numbers for pairs of these orbits. This topological invariant can be calculated in R3
but there is no analog for higher dimensions.

It is possible for a higher dimensional dynamical system to generate a strange attractor, with Lyapunov

dimension Dy, < 3, that is essentially three dimensional (that is, in principle there is a three-dimensional
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manifold in which the attractor can be embedded) [Moroz et al., 2007]. In this case, a topological anal-
ysis can be carried out provided that a suitable three dimensional embedding can be found. Due to the
uniqueness theorem [Arnol’d, 1978], trajectories in the embedding cannot self-intersect. If an embedding
can be found, on a three-dimensional manifold, then a topological analysis can be carried out in the same
way as for strange attractors in R3. Recent advances in dimensionality reduction techniques enable us
to find a three dimensional representation of the orbits, without any self-intersections, for some strange
attractors with Lyapunov dimension satisfying the condition D, < 3. In section 5 we find a three dimen-
sional representation of a strange attractor in R%, or more accurately of the unstable periodic orbits in this
attractor.

This work is organized as follows. In section 2 we describe how strange attractors in R3 can be analyzed
using topological methods. In section 3 we introduce a four-dimensional dynamical system. We review a
previous study on this system involving projections of the strange attractor into three-dimensional sub-
spaces. In section 4 we discuss dimensionality reduction as developed by the machine learning community.
We differentiate between the types of projections in section 3 and those in section 4 by referring to the
mappings described in section 3 as simple projections and the result of a dimensionality reduction technique
as a projection. In particular, we focus on the Locally Linear Embedding (LLE) algorithm. In section 5 we
explain how the LLE algorithm can be applied to surrogate periodic orbits within the strange attractor.
We then give the results of this procedure, including the linking numbers for pairs of periodic orbits. We

summarize our results in section 6.

2. Background

Strange attractors in R® can be classified in the sense that one attractor is equivalent to another when
there is a smooth deformation that takes one to the other in a continuous way. This classification scheme
is topological and provides, for each attractor, a branched manifold that describes the mechanism acting
on the flow to create the strange attractor. This approach relies on a theorem due to Birman & Williams
[1983a,b]. The theorem identifies two points in phase space if they have the same asymptotic future. This

can be formally stated as,

x~y if |x(t) - y(t)] 22 0. 1)

This identification corresponds to projecting the flow along the stable direction to a two-dimensional
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branched manifold. Under this projection the forward flow is uniquely determined but these trajectories no
longer have unique histories. The flow in R® becomes a semi-flow on the branched manifold. The important
aspect of the Birman-Williams theorem is that when a strange attractor is projected down to the branched
manifold the unstable periodic orbits remain unchanged, in the following way. In the projection, there are
the same number and type of periodic orbits with the same topological organization as those in the strange
attractor.

The topological organization of the orbits can be determined by computing the Gauss linking number

for pairs of orbits [Holmes & Williams, 1985; Mindlin & Solari, 1995]. The linking number is defined as,

1 (ra—rp)- (draxdrp)
LN(A,B) = 47T?£]§3 T , @)

Alternatively, the linking number can be computed by counting crossings in a two-dimensional projection.
Each intersection of the orbits in the projection is assigned an integer £1. The sign is determined by
considering tangent vectors to each orbit in the direction of the flow at the point of intersection. If the
rotation of the upper segment (closer to the observer) tangent vector into the lower tangent vector is
counter-clockwise then the crossing is assigned a value +1. If the rotation is clockwise the crossing is
assigned a value —1. The linking number is simply half the sum of the signed crossings.

A table of the linking numbers for pairs of periodic orbits describes their organization on the branched
manifold and within the strange attractor. The mechanism that produces the strange attractor can be
identified from the particular type of branched manifold. In fact, only the linking numbers for a few of
the lowest period orbits are usually required to determine the mechanism responsible for chaotic behavior
[Carroll, 1999].

Many strange attractors have been studied using this topological approach in three-dimensional phase
space. However, the lack of a higher dimensional analog to the Gauss linking number prevents this method
from being extended to higher dimensions. It is for this reason that a method of dimensionality reduction,

for attractors in higher dimensional spaces, is desirable.

3. A Four-Dimensional Dynamical System

Here we will consider an autonomous four-dimensional dynamical system that generates a strange attractor
with Lyapunov dimension, Dy < 3. Although the strange attractor exists in R? it is essentially three

dimengional. If the attractor can be embedded in R3 then a topological analysis can be carried out. The
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four-dimensional dynamical system we will be considering is the extended Malkus-Robbins (EMR) system

[Moroz, 2003, 2005},

X =o(Y - X) - 28U

v_EX v _xz
14

Z=—vZ+XY

U= X - AU, (3)

where X, Y, Z and U are the state variables and o, v, R, § and A are control parameters. These dynamical
equations are an extension of the Malkus-Robbins dynamo equations [Robbins, 1977]. They essentially
describe a Lorenz-like system with feedback. The (X,Y, Z) subsystem behaves like a Lorenz attractor
[Lorenz, 1963] that is coupled to the U subsystem through the control parameter 3. When 8 = 0 Egs. (3)

become identical to the Lorenz equations under the correspondence,

(o, R/v,v) = (o,7,b). 4)

The classic choice of Lorenz parameters (o, b, 1) = (10, 8/3, 28) corresponds to (o, v, R) = (10, 8/3,74.667).
These values will be used throughout along with A = 3.2. For this particular choice of the control parameters
chaotic solutions extend well into the 8 > 0 regime, until 8 ~ 8 at which point a boundary crisis destroys
the attractor [Letellier et al., 2007]). We will consider the strange attractor generated by Egs. (3) for these
values of the control parameters over the range of values 0 < 8 < 8.0. An X-Z projection of the strange

attractor for # = 3.0 is shown in Fig. 1.

3.1. Unstable periodic orbits

Topological analyses of strange attractors can be based upon the set of unstable periodic orbits (UPOs})
within the attractor. A relatively small number are required [Gilnore & Letellier, 2006] and we will focus
our attention on the orbits of lowest period. The UPOs may be found by the method of close returns

[Gilmore, 1998]. Since (3) is a four variable system we search for trajectories satisfying,

X5 = Xl <6, ()
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Fig. 1. The X-Z projection of the strange attractor for (0.1, R. 3, A) = (10,8/3,74.667, 3.0, 3.2).

where X; = X(t;) and ||X|| = vV X2+ Y2 + Z2 + U?. The parameter § is usually chosen to be about 1%
of the diameter of the strange attractor [Gilmore & Lefranc, 2002]. The actual value used depends on a
compromise between the accuracy of the surrogates and how many are required. A more stringent threshold
will result in fewer surrogates that are very good in the sense that they close up well and represent the UPO
accurately. In this case § was chosen to be 0.1 which is ~ 0.2% of the diameter of the strange attractor.

The method of close returns allows us to find trajectories that evolve around the attractor and return
to a neighborhood of the starting point. Each surrogate orbit can be labeled using a symbol representation
introduced by [Moroz et al., 2007] which is based on the labeling used for the Lorenz attractor [Byrne et al,
2004; Letellier et al., 2005]. The symbol representation is a sequence of the symbols L and R indicating
passage in the neighborhood of the left or right focus respectively. This passage is checked by the use of
a Poincaré section consisting of two half infinite planes, each centered on one of the foci of the attractor.
The number of times that a UPO intersects these two planes is simply the topological period of the orbit.
For example, the period three orbit shown in Fig. 2 intersects the left component of the Poincaré section
once and the right component twice.

Fig. 2 illustrates the natural way to label each of the UPOs. Every orbit is labeled by two symbols, L
and R, indicating intersection with component L or R of the Poincaré section. Under this labeling scheme

the orbit shown in Fig. 2 is LR2.
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Fig. 2. A surrogate period three orbit, found by the method of close returns, for 8 = 3.0. The flow is directed counter-
clockwise around the right hand focus. The point of close return is located at (Y, Z) = (—1.59,9.33). The dashed vertical lines
are the two componcnts of the Poincaré section.

The method of close returns essentially extracts segments from a time series that are almost periodic.
The segments remain in the neighborhood of the unstable periodic orbit and so behave like the orbit itself.
Segments of the data set that are found this way are known as surrogate UPOs.

Using the method of close returns, surrogate UPOs were found over a range of values of the control
parameter 5. Such an example is shown in Fig. 2 for a surrogate period three orbit. Surrogates like that

shown in Fig. 2 were found up to period six.

3.2. Topological analysis on simple projections into R3

The mechanism responsible for creating a strange attractor and organizing all the UPOs can be deter-
mined through a topological analysis of the dynamical system. The procedure for this involves computing
topological invariants of the UPOs, their linking numbers, in R3. By constructing a table of the linking
numbers for just the lowest period UPOs it is possible to see if these topological indices are compatible
with a branched manifold. In principle, the linking numbers for all UPOs should be checked. However,
in practice, it has been found that computing linking numbers for about half a dozen orbits is sufficient
[Moroz et al., 2007]. It is this branched manifold that identifies the mechanism responsible for the chaotic
behavior. The procedure is carried out for fixed values of the control parameters.

For the system under consideration here, Egs. (3), we fix the control parameters o, v, R, A and compute
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the table of linking numbers for several values of 3. For each value of the parameter, 3, the table of linking
numbers is checked for compatibility with a branched manifold.

Such an analysis has been carried out on projections of the strange attractor [Moroz et al., 2007]. The
two simplest projections considered were from (X,Y, Z,U) to (X,Y,Z) and (X,Y,U). In the projected
subspaces the linking number for pairs of orbits can be calculated either by the Gauss linking integral,
Eq. (2), or more simply by counting crossings in a two-dimensional projection. The linking number is
simply half the sum of the signed crossings in the two-dimensional projection.

Moroz et al. [2007] showed that the (X,Y, Z) projection was described by a Lorenz type branched
manifold with rotation symmetry for small values of the control parameter, 0 < 8 < 0.6. For intermediate
values, 0.6 < 8 < 5.4, the projected subspace failed to provide an embedding. For large values, 5.4 < 3 <
7.9, the subsystem was described by the mirror image of the branched manifold for the small-3 regime. This
was determined by the fact that the linking numbers decreased through integer steps, in the intermediate-3
range, eventually assuming the negative of the value in the small-8 regime. As the linking numbers change,
for intermediate values of 3, trajectories in the three-dimensional phase space undergo self-intersections.
This violates the uniqueness principle, in the subspace, and prevents the projection from providing an
embedding.

The projection (X,Y,Z,U) — (X,Y,U) exhibits different behavior. This projection is described by
a Lorenz branched manifold with inversion symmetry for most, but not all, values of 3. In contrast to
previously published results [Moroz et al., 2007], we found that some orbit pairs exhibited a change in
their linking number, in this projection, as § is varied. Specifically, orbits LR and LLRLR have LN = +1
for B8 = 0.8 (Fig. 3) and LN = 0 for 8 = 4.83 (Fig. 4). This means that the (X, Y, U) projection does not
remain an embedding for all values of 5.

This change in the linking number suggests there are self-intersections of the attractor in the same way
as was observed for the (X,Y, Z) projection. To test for this we computed the linking numbers over the
entire range of the control parameter, 0 < 8 < 8.0. We found that the linking number was +1 for 8 < 1.4
and 0 for 8 > 1.4.

As a final check, the minimum distance between the pair of UPOs for each value of 3 was computed.
Fig. 5 shows a plot of this minitnum distance as a function of the control parameter.

Each time a self-intersection occurs in the (X, Y, Z) projection a sharp downward spike is observed.
These correspond to the values of 8 where the linking numbers systematically decrease through integer

steps. The plot of minimum distance for the (X,Y,U) projection also tends toward zero for § ~ 1.4.
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Fig. 3. The Y-U projection of the two UPOs LR and LLRLR for § = 0.8. Their linking number is +1 for this value of the
control parameter, 3.

-20 -10 0 10 20

Fig. 4. The Y-U projection of the two UPOs LR and LLRLR for 8 = 4.83. Their linking number is zero for this value of
the control parameter, 3.

The minimum distance in the full four-dimensional phase space never tends to zero due to the uniqueness
principle.

It is now clear that self-intersections occur in the (X, Y, U) subspace as the linking number changes
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Minimum Distance

Fig. 5. The minimum distance between the orbits LR and LLRLR as a function of 8. The minimum distance is shown for
the two simplest projections, (X,Y,Z) and (X,Y,U) as well as the full four dimensional space.

value and this projection is not an embedding. Since simple projections of the attractor do not provide

embeddings we turn to other dimensionality reduction techniques.

4. Dimensionality Reduction

Dimensionality reduction techniques have been developed to find low dimensional structure within high
dimensional data sets. More specifically, for a data set consisting of N vectors, each of dimension D, the
points in the data set may lie on or near to a manifold of dimension d (where d < D). Dimensionality
reduction algorithms find a d-dimensional representation that best preserves certain geometric properties
of the data.

Two classical methods in this field are principal component analysis (PCA) [Jollifle, 1986] and linear
discriminant analysis (LDA) [Fisher, 1938; Fukunaga, 1990]. These techniques are linear in nature and
nonlinear structure within a data set is essentially invisible to these methods. In recent years, many
nonlinear techniques have been developed. Some of these build on linear methods, such as isometric feature
mapping (Isomap) [Tenenbaum et al., 2000}, which is an extension of classical multidimensional scaling {Cox
& Cox, 1994], whilst others adopt an entirely new approach. Some of the more popular techniques include
the Isomap algorithm [Tenenbaum et al., 2000]; locally linear embedding [Roweis & Saul, 2000]; Laplacian
eigenmaps [Belkin & Niyogi, 2003] and diffusion maps [Coifinan & Lafon, 2006]. They were developed
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for manifold learning, in the machine learning community, for applications such as facial recognition and
handwritten character recognition.

The problem of finding lower dimensional structure in a high-dimensional data set is common to many
areas of science and it is no surprise that these techniques have become more widely used in other fields of
research. One example is the use of these techniques in the study of dynamical systems [Bollt, 2007}.

These nonlinear algorithms tend to be computationally expensive for large data sets. For this reason
we decided not to apply them to the entire attractor but to the UPQOs. This allows the techniques to be
used to determine the organization of the UPOs within the attractor by computing the linking numbers
for pairs of orbits.

We have studied all the methods indicated above. Here we choose to focus on the LLE algorithm to
reduce UPOs, in four-dimensional phase space, to a representation in three dimensions. This was partly
due to computational efficiency since LLE was found to perform much quicker than the Isomap algorithm.
Laplacian eigenmaps require a uniform sampling of the underlying manifold. LLE, however, is robust to
different sampling methods which allows us to sample points from the attractor that lie near to the UPOs
that we wish to study. Finally, LLE has an intuitive approach that involves reconstructing each data point
from its nearest neighbors. The algorithm requires only two input parameters, the target dimension and
the number of nearest neighbors. Diffusion inaps require other input parameters and the embedding can
be quite sensitive to the choice of these parameter values.

In short, LLE seems to combine good performance with an acceptable computational cost. The LLE

algorithm will now be explained in more detail.

4.1. Review of locally linear embedding

LLE assumes that each data point in a high dimensional space lies on a lower dimensional nonlinear
manifold [Saul & Roweis, 2003]. The input to the algorithm is a set of N vectors in R” that lie on a
manifold of dimension d, with d < D. Furthermore, it is assumed that each data point and its neighbors
lie close to a locally linear patch of the manifold. The algorithm aims to reconstruct the original data set
in a lower dimensional space that best preserves the local geometry of every neighborhood and outputs a

set of N vectors in R%. There are three main steps to the algorithm:

(1) Assign neighbors to each data point in the original data set.
(2) Compute the weights that best linearly reconstruct each data point from its neighbors.

(3) Find the vectors in the low-dimensional space by fixing the weights to be those found in step (2) and
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minimizing a cost function.

Each of these steps will now be explained in more detail.

Assigning the nearest neighbors to each data point usually involves one of two methods. This is to
either take the K-nearest data points based on Euclidean distance (K-nearest neighbors) or to choose the
neighbors contained in a ball of fixed radius, ¢, centered on each data point (c-ball).

Consider a data set consisting of N points. By thinking of each data point in the higher-dimensional
space as a vector, Xi, each can be reconstructed through a linear combination of its neighbors. The error

in this reconstruction is measured by the cost function,

N
E(W) = ZIX‘Z — Z Wijfjlz, (6)

i=1 i
which adds up the squared distances between all the data points and their reconstructions. The weights,
W;;, are found by minimizing this cost function subject to two constraints. The first is that each data point
is reconstructed only from its neighbors, i.e. W;; =0 if X, ;j is not a neighbor of X,. The second constraint
is Zj W;; = 1, which imposes translational invariance.
The third step also involves minimization of the cost function. However, this time the weights are fixed
and the vectors are found that minimize the reconstruction error. The weights from step two are used in

minimizing the embedding cost function,

N
oY) = 1Y, = > Wyl (M)

i=1 J#i
where Y are the low dimensional embedding vectors.
The minimization is performed subject to two constraints. The first constraint removes the translational

degree of freedom such that the output vectors, Y;, are centered on the origin,

S ¥i=0 ®)

i
The second constraint removes the rotational degree of freedom such that the output vectors have unit

covariance,
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TS =1 ©)
i

The embedding cost function Eq. (7) can be rewritten in terms of a cost matrix,

a(Y) =) Mi(Vi.Y)), (10)
tj
where the cost matrix is given by,
Mij = tSij — Wij — Wji + Z Wkiij- (11)
k

Minimizing Eq. (7) is equivalent to finding the eigenvectors corresponding to the d + 1 lowest eigenvalues
of the cost matrix.
The result of applying this algorithm to points sampled from a two dimensional manifold in R? is

shown in Fig. 6.

Fig. 6. LLE applied to the two dimensional S-shaped manifold using the MATLAB procedure by Saul & Roweis [2003] that is
publicly available from http://cs.nyu.edu/~roweis/lle/. 1000 points were sampled from the known manifold and the resulting
embedding was computed using 12 nearest neighbors.

The S-shaped manifold is a common example used for testing dimensionality reduction techniques
[Ham et al., 2003]. In this case 1000 points were sampled from the manifold and 12 nearest neighbors
were used to compute the two dimensional embedding. The rightmost image in Fig. 6 shows how the LLE
algorithm is capable of unfolding the data set to reveal the intrinsic two dimensional structure. LLE has

also been successfully applied to other manifolds, such as the “Swiss Roll” manifold [van der Maaten et al.,
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2009]. Some example applications of LLE include analysis of data sets of hyperspectral images [Kim &
Finkel, 2003] and articulated shape matching [Mateus et al., 2007].

LLE aims to preserve intrinsic geometric properties of every neighborhood and these intrinsic properties
are characterized by the reconstruction weights W;;. We additionally constrain these weights to satisfy
S ; Wi; = 1 so that for any particular data point, they are invariant to translations in addition to rotations
and rescalings of that data point and its neighbors. The algorithm is effective in revealing global nonlinear
structure through the local symmetries of linear reconstructions. The effectiveness depends on the two
inputs to the algorithm, the number of nearest neighbors and the embedding dimension. For problems
where the data points are assumed to lie on a nonlinear manifold of known dimension the important
question is: how does the choice of number of nearest neighbors affect the lower dimensional embedding?

This will be addressed in the next section where the algorithm will be applied to orbits in R%.

5. Application of LLE to UPOs in R?*

The UPOQs that were found by the method of close returns in section 3 must be embedded in R? in order
to compute linking numbers and determine their topological organization. To achieve this using LLE we
took two UPQs and a sample of data points from the strange attractor. These sampled points were chosen
to lie near to each of the UPOs and were used as nearest neighbors in the LLE algorithm. This ensured
that the underlying manifold was sufficiently sampled to produce an accurate embedding of both UPOs
simultaneously.

As an example, we consider the two orbits LR and LRR. The Y-Z projection of these orbits along
with the points sampled from the attractor are shown in Fig. 7.

Implementing the LLE algorithm requires only two inputs: the embedding dimension, d, and the
number of nearest neighbors, K. The manifold containing the attractor is assumed to be three-dimensional,
since Dy, = 2.2, so we set d = 3. However the choice of the value of K is not so straightforward. If K is too
small then the geometry of the manifold is not recovered due to undersampling. If K is too large then the
the assumption that the neighborhood is locally linear would be violated. The aim is to find a range of K
values over which the embedding remains stable. Similar arguments apply in the case of assigning neighbors
using the ¢-ball technique. This can help in avoiding the use of neighborhoods that violate the locally linear
requirement. As with the nearest neighbors method, ¢ cannot be chosen too small or undersampling could
occur and the aim would be to find a range of ¢ values over which the locally linear embedding remains

stable.
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Fig. 7. The Y-Z projection of two surrogate UPQOs, LR and LRR, for 8 = 5.0, with 2851 points sampled from the underlying
three-dimensional manifold. The orbit LR consists of 347 points and the orbit LRR consists of 556 points.

Figs. 8, 9 and 10 show the orbit LRR embedded in three dimensions for three different values of K.
In each case, the points sampled from the strange attractor were removed from the data set after the LLE
algorithm had been applied. Then, a specific orientation was chosen in the three-dimensional space, this
is because LLE is invariant up to a rotation. The following orientation convention was adopted. For each
orbit, the point closest to the component R of the Poincaré section was determined. The orbit was then
rotated so that this point was on the z-axis. Orienting each orbit in the same sense allowed each of the
embeddings to be compared to find the range of K values over which the embedding remained stable.

The linking numbers for pairs of orbits, in the three-dimensional embedding, were computed by count-
ing crossings in the z-z projection. These linking numbers were computed for all values of K in the range
5 < K < 40. For the lowest values of K the linking numbers were found to vary depending on the number
of nearest neighbors used. This type of error should be expected from inspection of Fig. 8. However, for all
pairs of orbits, the linking number was found to remain the same for all values of K above a certain thresh-
old value. For all the orbits studied here, K = 20 proved to be a sufficient number of nearest neighbors
since it was contained within the range over which the linking number remained constant.

The results are shown in Table 1, for the lowest period UPOs. These results are consistent with those
for the Lorenz branched manifold with rotation symmetry. The most important aspect of these results is

that the table of linking numbers remains the same for the entire range of control parameter, 0 < 8 < 8.0.
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Fig. 9. Locally linear embedding of the orbit LLRR for K = 20.

This is under the previously mentioned assumption that there is a three-dimensional manifold on which
the attractor may be embedded. We did not check that the full four-dimensional dynamics are preserved

in the lower dimensional subspace.
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Fig. 10. Locally linear embedding of the orbit LLRR for K = 30.

Tablel. The linking numbers of unstable periodic orbits that
were embedded using LLE.

LR LLR LRR LLLR LRRR LLRR

LR - 1 1 1 1 2
LLR 1 - 1 2 1 2
LRR 1 1 - 1 2 2
LLLR 1 2 1 1 2
LRRR 1 1 2 1 - 2
LLRR 2 2 2 2 -

6. Conclusion

We have analyzed a four dimensional dynamical system that generates a strange attractor with Lyapunov
dimension Dy, ~ 2.2. The analysis was dependent on the UPQOs that were found by the method of close
returns in the four-dimensional phase space.

We were able to use a dimensionality reduction technique, LLE, to find an alternative projection of
the UPOs in R3. The linking numbers for pairs of these orbits were computed and these values remained
constant for all values of the coupling constant in the range 0 < 8 < 8.0. This indicates that no self-
intersections occur for the dimensionality reduced orbits as 8 is varied. The system is described by a
Lorenz-type branched manifold with rotation symmetry for all values of the control parameter, 3.

The methodology described in this paper can be applied to other strange attractors that satisify the
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condition Dy < 3.
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