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Abstract

The Saha equation is usually derived using an argument involving one

of the classical thermodynamic functions, the Gibbs’ free energy. Some-

times dynamical arguments are used. Since the Saha result is a statistical

relation, it would be desirable to have less roundabout methods for its

derivation. Here the Saha equation is derived directly from the partition

function.

The dissociation interaction

AB
∆E
↔ A + B (1)

is encountered under many conditions:

Process Equation ∆E (eV)
Molecular dissociation: H2 ↔ 2H −4.476

Atomic ionization: H ↔ p+ + e− −13.597

The dissociation process is described by the Saha equation.
To motivate the result that follows, we first begin with a very simple example.

Suppose we start with three “molecules” of type AB. Each dissociates into two
different “atoms” A and B. The partition function, counting all possible states
weighted by their Boltzmann factors, is

ZTot =
Z3

AB

3!
+

Z2
AB

2!

Z1
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1!

Z1
B

1!
+

Z1
AB

1!

Z2
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2!

Z2
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2!
+

Z3
A

3!

Z3
B

3!
(2)

In this expression ZA = V (2πMAkT/h2)3/2Za(int). The first factor comes from
an integral over the phase space of the center of mass coordinates of the particle.
The second factor, Za(int), is the partition function counting only the internal

states of A. Similarly for B and the combined particle AB. Each term in Eq.

(2) accounts for one of the possibilities suggested by Eq. (1). The part
Z3

AB

3! is
the relative probability that exactly 3 AB molecules are present. The molecules

are indistinguishable, hence the factor of 1
3! . The second term,

Z2
AB

2!
Z1

A

1!
Z1

B

1! , is
the relative probability that two molecules AB are present with one “atom”
each of A and B. And so it goes. The absolute probabilities are obtained by
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normalizing each of these (four) terms with their sum, ZTot. It will not be
necessary to do this normalization.

When lots of atoms AB and their dissociation products are present, the total
partition function is a simple generalization of that given in Eq.(2):

ZTot =
∑ ZNAB

AB

NAB !

ZNA

A

NA!

ZNB

B

NB!
(3)

The sum extends over all allowed values of the integers NAB, NA and NB. The
integers are not free to vary arbitrarily: if NAB decreases by one, NA and NB

must increase by one.
Instead of trying to carry out this sum, it is simpler just to look for the most

likely state: the state of largest probability. Roughly but accurately, as the
integer NAB decreases by integer steps and the two integers NA and NB each
increase by integer steps, the relative probabilities will first rise, then reach a
maximum, then finally decrease. At the largest liklihood, two successive relative
probabilities will be approximately equal. We can represent this condition as

ZNAB

AB

NAB!

ZNA

A

NA!

ZNB

B

NB!
=

ZNAB−1
AB

(NAB − 1)!

ZNA+1
A

(NA + 1)!

ZNB+1
B

(NB + 1)!
(4)

This is easily rewritten as

ZAB

NAB
=

ZA

NA + 1

ZB

NB + 1
(5)

For large numbers of particles there is little difference between NA + 1 and
NA, so we can neglect the +1’s in the denominator on the right hand side. Now
substituting the expressions for the three individual partition functions ZAB, ZA

and ZB into this expression, we find

V (2πMABkT/h2)3/2Zab(int)

NAB
=

V (2πMAkT/h2)3/2Za(int)

NA

V (2πMBkT/h2)3/2Zb(int)

NB
(6)

In each of these three factors there is a ratio of V/N∗ = 1/(N∗/V ) = 1/[n∗].
Here [n∗] is the density of particles of type ∗. We measure this in number of
particles per cm3. By unwinding these factors carefully, we find

[nA][nB]

[nAB]
=

(

2π(MAMB/MAB)kT

h2

)3/2
Z(int)aZ(int)b

Z(int)ab
(7)

We now turn this into a computationally useful expression. We assume that
AB is bound by an energy ∆E which is negative (−13.6 for the hydrogen atom
and −4.476 for the hydrogen molecule). We assume the molecule AB has no
internal structure and only the single bound state at ∆E, so Z(int)a = e−β∆E.
We further assume that neither A nor B has any internal structure, so that
Z(int)a = 1, Z(int)b = 1. Next, we introduce a reaction coordinate x that
describes quantitatively how far the reaction proceeds in some direction (by

2



convention, to the right). In terms of this coordinate, if the initial concentration
of molecules AB at low temperature is n0, at finite temperature T , [nAB] =
(1− x)n0 while nA = nB = xn0. Taking logs (to base e) of both sides of Eq.(7)
we find

log

(

x2

1 − x

)

= β∆E−
3

2
log(−β∆E)+

3

2
log

(

2π(MAMB/MAB)(−∆E)

n
2/3
0 h2

)

(8)

If the masses are measured in units of the proton mass, energies are measured
in electron volts, and densities are measured in “Avogardos per cm3”, this ex-
pression becomes

log

(

x2

1 − x

)

= β∆E−
3

2
log(−β∆E)+5.9769+

3

2
log(M/Mp)+

3

2
log(|∆E|/(1eV))−log(n/n0)

(9)

Application 1: “Recombination”

As the universe expanded and cooled after the Big Bang, the temperature
and the particle density decreased to a point where it was entropically feasible
for charged free protons and oppositely charged free electrons to combine to
form electrically neutral hydrogen atoms:

p+ + e− → H (10)

This occurred about 380,000Y after the Big Bang. At this time the temperature
was about 3000 ◦K and the baryon density was about 1.2 × 102 protons/cm3,
so that n/n0 = 0.2 × 10−21. We use MpMe/MH = Me = 1/1836, measured in
units of proton mass. The reaction coordinate x, as a function of temperature,
is derived from Eq.(9) and plotted in Fig. (1).

Technical Details: These details can be skipped on first reading. Both
the electron and the proton have spin 1

2 , so each momentum state is two-fold
degenerate. As a result, both the electron and the proton partition functions
should be multiplied by a factor of 2. Countering that, the hydrogen atom 1s
ground state is four-fold degenerate (both the proton and electron can have spin
up or spin down), so its partition function should be multiplied by a factor of
4. The ratio 22/4 leaves Eq. (9) unchanged.

A more serious problem concerns the internal structure of the hydrogen
atom. It would seem that the appropriate internal partition function, consisting
of the sum of the Boltzmann factors over all possible bound states, is

ZH(int) =
∑

Bound States

e−βEn →

∞
∑

n=1

4 × n2e−βEg/n2

→ “∞′′

where Eg = −13.58 eV. This sum diverges. We have kept only the first term
in this sum in Eq. (9), which is very small except for very high temperatures.
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Figure 1: Reaction coordinate x as a function of temperature at about 380,000
ABB when the baryon density is about 1.2 × 102 protons per cm3.

What justifies this gross approximation? We claim that the Boltzmann factors
for the excited hydrogenic states should not be considered on the grounds that
these states are not in thermal equilibrium with the surroundings. To justify
this claim we point out that population inversion of the higher states, leading
to observed maser radiation, is not possible in thermal equilibrium.

Application 2: Molecular Dissociation

At the surface of some stars the molecular to atomic dissociation

H2
∆E
↔ 2H (11)

takes place. Molecular hydrogen is bound by 4.476 eV at 0◦ K. We introduce a
reaction coordinate x as above. If the concentration of H2 at very low temper-
atures is n0, then at higher temperatures [nH2

] = (1 − x)n0 and [nH ] = 2xn0.

The left-hand side of Eq.(9) is log( (2x)2

1−x ) while the right hand side differs in

the values of the parameters ∆E and n0. If we choose n0 = 1
2 Avogardo, the

dissociation curve is as shown in Fig. 2.
The molecular dissociation shown in Fig. (2) occurs at a slightly higher

temperature (by a factor of 4) than the recombination, or atomic ionization
that is shown in Fig. (1). This is due to the vastly different densities that
have been assumed for the two cases. In the first case the density is about 102

protons / cm3 while for the second case it is larger by 21 orders of magnitude.
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Figure 2: Reaction coordinate x as a function of temperature for dissociation
of molecular into atomic hydrogen at the surface of a star where the density is
6.024× 1023 protons per cm3.

Application 3: Dissociation - Ionization
A gas of molecular hydrogen at fairly low temperature will dissociate into

atomic hydrogen as the temperature increases, and the atomic hydrogen will
dissociate (“ionize”) as the temperature continues to increase. The two processes
can be described by the Saha equation. We formulate this double dissociation
process in terms of Boltzmann factors and partition functions.

The partition function describing all possible states is

Z =
∑ Z

NH2

H2

NH2
!

ZNH

H

NH !

Z
N

p+

p+

Np+ !

Z
N

e−

e−

Ne− !
(12)

The contribution to this sum with the largest weight is searched for in two

different directions, corresponding to the two independent reactions. These are
described by the stoichiometric coefficients νi:

Reaction Coord. H2 H p+ e−

x −1 +2 0 0
y 0 −1 +1 +1

The equilibrium conditions are

Πi=1

(

Zi

Ni

)νi

= 1 for each reaction (13)
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When we unwind the two expressions represented by Eq. (13) in terms of
the stoichiometric coefficients νi, the factors (2πmkT/h)3/2, and the internal
partition functrions, we find

Rx 1 :
[nH ]2

[nH2
]

=
1

e−βE1

(

2π(M2
H/MH2

)kT

h2

)3/2

(14)

Rx 2 :
[np+ ][ne− ]

[nH ]
=

1

e−βE2

(

2π(Mp+Me−/MH)kT

h2

)3/2

(15)

There are two reactions and four reactants. The four concentrations can be ex-
pressed in terms of 2 = 4−2 reaction coordinates. We begin with an electrically
neutral gas of hydrogen molecules at low temperature, with a concentration of n0

molecules/cm3. at any finite temperature, [nH2
] = (1−x)n0, [nH ] = 2(x−y)n0,

and [np+ ] = [ne− ] = 2yn0. Two two equations that define the values of the two
reaction coordinates are now

1 : log
[2(x − y)]2

1 − x
= βE1 −

3

2
log(β|E1|) +

3

2
log

(

2π(1
2MH)|E1|

n
2/3
0 h2

)

(16)

2 : log
(2y)2

2(x − y)
= βE2 −

3

2
log(β|E2|) +

3

2
log

(

2πMe|E2|

n
2/3
0 h2

)

(17)

(18)

This pair of coupled nonlinear equations is certainly formidable looking. How-
ever, as long as the two dissociation energies E1 and E2 are “very different” the
results are easy to describe. Very different means the transition ranges from
x ≃ 0 → x ≃ 1 and y ≃ 0 → y ≃ 1 are both narrower than the energy difference
|E1 − E2|. In this case, as a function of increasing temperature x rises from 0
to 1 while y remains 0. After a further increase of temperature y rises from 0 to
1 while x remains 1. The temperatures at which the two transitions take place
can be computed as if only a single process were taking place. Note that we
cannot use Figs. (2) and (1) in series because they were computed under vastly
different density conditions. Note also that a density change of 1010 corresponds
to a temperature change by a factor of only about 23 ≃ 101.37.
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