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Previous authors have introduced a Riemannian surface [(S,V),U,g(S,¥)], and claimed that this surface
could be identified with the surface U = U (S, V) for a substance in thermodynamic equilibrium. No proof
has ever been offered of this supposed equivalence. The paper commented on showed that such a proof is
not possible unless a new class of thermodynamic inequalities were to exist (they do not). The two preced-
ing Comments also fail to provide a proof that these two surfaces can be identified. In the present Com-
ment we prove once again, citing fundamental theorems of differential geometry, that this identification is
not possible. We show specifically that any Riemannian metric chosen to measure distances in the equilibri-
um surface must lead, through the curvature tensor, to a Gaussian sectional curvature which is everywhere
positive semidefinite if the convexity condition of the second law of thermodynamics is not to be violated.
Two previous choices of metric do not possess this property.

For a substance in thermodynamic equilibrium depending
on n independent extensive thermodynamic variables, the
equilibrium surface is an n-dimensional surface in the space
of n+1 extensive thermodynamic variables: f(U,S,V,N,
...,E"*1)=0. This surface is convex in the energy
representation U=U(S,V, ..., E"*') [concave in the en-
tropy representation S =S (U,V, ..., E"*1)] by the second
law of thermodynamics."?> Convexity means that the sur-
face lies everywhere above each tangent plane (n=2) or
tangent space (n > 2). In the following we will restrict con-
sideration to n=2 and to the energy representation
U=U(S,V) for concreteness. Conversion to the entropy
representation can be carried out without difficulty, and ex-
tension to n > 2 variables will be discussed toward the end
of the response. In this concrete case the energy surface
U=U(S,V) is a two-dimensional surface embedded in the
three-dimensional space R® of thermodynamic variables
(U,S,V), and convexity means that both principal curva-
tures are positive (non-negative in multiphase regimes).

The study of two-dimensional surfaces embedded in
three-dimensional space is the subject of classical differen-
tial geometry. These studies have been carried out in two
distinct ways.>* In the first (“‘Gaussian’’) approach, a no-
tion of distance, or metric, is introduced in the embedding
space R3. The distance between two nearby points in the
surface z =2z (x,y) is defined as the distance between these
points, considered as points in R3. This identification in-
duces a metric tensor g (x,y) on the surface. The quadratic
form based on g is called the first fundamental form of the
surface.>* The curvature of the surface z =z (x,y) is deter-
mined by a second tensor L (x,y) on the surface. The qua-
dratic form based on L is called the second fundamental
form of the surface.** The two fundamental forms g
(measuring distance) and L (measuring curvature) are not
unrelated, but must obey the Gauss-Codazzi equations.>*
The Gaussian sectional curvature K (x,y), which is the
product of the two principal curvatures at (x,y), is the ratio
of determinants of these two forms: K =detL/detg.>*
Gauss was able to determine one of the invariants of L, its
determinant, as a function of the metric tensor g and its
first and second partial derivatives. This showed that a
property of the surface which appeared to depend on
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embedding was, in fact, an intrinsic property of the surface.
The importance which Gauss attached to this result is re-
flected by the name he gave to it: theorema egregium. The
inverse problem was resolved by Bonnet, who proved that if
848(x.y) is a real symmetric positive-definite tensor and
L,g(x,y) is a real symmetric tensor, with ¢ and L obeying
the Gauss-Codazzi equations, then there exists a surface
z=2z(xy) in R> with g and L as its first and second funda-
mental forms, and this surface is unique up to rigid
motions. This theorem is called the fundamental theorem
of surface theory.>*

The second approach to the study of surfaces was pro-
posed by Riemann.** He dispensed completely with
embeddings, studying only the intrinsic properties of sur-
faces. In this approach only the parameter space [(x,y) of
R2] is used, and a metric tensor g(x,y) is introduced on
this parameter space, making it, in general, non-Euclidean.
Riemann showed that the intrinsic curvature properties, in
particular, the Gaussian sectional curvature of the Rieman-
nian space [(x,y),g(x,y)], could be determined from the
(Riemann) curvature tensor R ,g ,s, Which was constructed
from g and its first and second partial derivatives. Different
choices of metric can give the domain x2+y?2 < 1 in R? the
metric and curvature properties of a hemisphere, one sheet
of a two-sheeted hyperboloid, a saddle, etc.>* Metrics
which exhibit these properties can be constructed starting
from (6.2) of Ref. 6. The question of whether an arbitrary
two-dimensional Riemannian manifold [(x,y),g (x,y)] could
be isometrically embedded in a three-dimensional Euclidean
space is more difficult. Although a global embedding is not
always possible, a result of Janet and Cartan showed that a
local embedding was always possible.>”

The space R? of thermodynamic variables (U,S, ¥) has, a
priori, no natural notion of distance. However, an equilibri-
um surface U= U(S,V) is everywhere convex."? There-
fore, the matrix U,g(S,¥) of mixed second partial deriva-
tives, or stability matrix, is positive (semi)definite. This
matrix describes the curvature of the equilibrium surface,
and is therefore the second fundamental form of the sur-
face. Ruppeiner,® and also Salamon, Andresen, Gait, and
Berry’ have chosen to adopt U,g(S,¥) as the Riemann
metric tensor on the parameter space (S,V):
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8ap(S, V) = U,g(S,V). They have made the claim, but no-
where proved, that the Riemannian space so defined can be
identified with the equilibrium surface. This is a nontrivial
claim, since the equilibrium surface U = U (S, V) is embed-
ded in R3, but the Riemannian surface [(S,V),U,g(S, V)]
is not embedded at all. Nor have they discussed the curva-
ture of the Riemannian space [(S,7),U,g(S,¥)]. The cal-
culation of the Gaussian sectional curvature K (S,V) was
carried out in Ref. 6. Two questions now arise:

(1) Can the Riemannian surface [(S,V),U,s(S, V)] be
embedded in a three-dimensional space R3?

(2) If so, can the embedded surface z =z (S, V) be identi-
fied with the original equilibrium surface U= U (S,V)?

In answer to (1), a local embedding is always possible
(result of Janet-Cartan).®> If we assume the surface is
orientable, a global embedding is also possible. To con-
struct these surfaces, we observe that we have a well-
defined first fundamental form g.g(S,V) = Ug(S, V).
Although there is no second fundamental form, there is in-
formation about one of the curvature invariants. We can
introduce a family of real symmetric tensors L,g(S, V) sub-
ject to the condition detL = K detU,g. Then, by the funda-
mental theorem of surface theory,>* to each pair of funda-
mental forms g45(S, V) = U,s(S, V) and L,g(S, V) there cor-
responds a unique (up to rigid displacements) embedded
surface: z=1z(S,¥). We now turn to question (2): Can
any of these surfaces correspond to the original equilibrium
surface? To resolve this question we look at the signature
(number of positive eigenvalues minus number of negative
eigenvalues) of the second fundamental form. For the
equilibrium surface U= U(S,V) both principal curvatures
are positive, so the signature is +2. For the embedded
Riemannian surfaces the principal curvatures are of the
same sign at (S, V) if K(S,¥) > 0 (signature is +2 or —2),
but must be of opposite signs if K (S,V) <0 (signature is
0). Since the signature of the curvature of a surface at a
point is an invariant,®1%!! the embedded surface z =z (S, V)
constructed from the fundamental theorem of surface
theory cannot be identified with the equilibrium surface
U=U(S,V) unless they have identical signatures every-
where. To put it another way, if the curvature signature of
z=2z(S,V) is not +2 everywhere, this surface is not every-
where convex, and therefore cannot be an equilibrium sur-
face, since lack of convexity violates the second law of ther-
modynamics."> A necessary but not sufficient condition
that z=2z(S,¥) be identifiable with U= U(S,V) is that
K (S,V), computed from g,5(S, V) = U,g(S,V), be positive.
These conditions are presented explicitly in Ref. 6, Eq.
(5.3).

An alternative approach to the questions of length, curva-
ture, and embedding was also proposed in Ref. 6, Sec. VI.
In this approach the stability matrix U,g(S, V) is identified
with the second fundamental form L,g(S,V) of the equili-
brium surface U= U(S,¥). To determine the first funda-
mental form, we first introduce a notion of distance in R?3,
the space of thermodynamic variables [Ref. 6, Eq. (6)].
The metric on the surface U= U(S,¥) is then induced
from this metric on R3, giving a first fundamental form
848 (S, V) [Ref. 6, Eq. (6.2)]. With this metric, the space
[(S,¥),g'(S,V)] is a Riemannian space. The second funda-
mental form L.g(S, V)= U,e(S,V) cannot be computed
from ga.g(S,¥) but the Gaussian sectional curvature
K (S, V) can be. In Ref. 6, Eq. (6.5), we show that the
scalar K (S,¥) so computed is equal to one of the invariants

3145

of L,g(S,V)="Uu(S, V). This compatibility ensures that
the surface embedded in R3, which is constructed from the
Riemannian space [(S,¥),g'(S,¥)] by the fundamental
theorem of surface theory, can always be identified with the
original equilibrium surface.

The dialogue contained in this and the preceding two pa-
pers'> 13 raises the following possibilities:

(1) The relation between the Riemann metric tensor
24p(S, V) and the Gaussian curvature scalar K (S, V) should
be ignored. This amounts to rejecting Gauss’s theorema
egregium.

(2) First and second fundamental forms g,g(S,V)
=U,g(S, V) and L,g(S, V)= U,e(S, V) can independently
be introduced. This ignores the Gauss-Codazzi compatibili-
ty conditions relating the two fundamental forms.

(3) An arbitrary positive-definite metric [e.g., gq5(S,¥)
= Uug(S, V)] can be introduced on the thermodynamic vari-
ables (S,V). The resulting Gaussian sectional curvature
may indeed be negative. This appears to be the operating
assumption of the two previous papers.!*!* This approach
ignores the uniqueness statement of the fundamental
theorem of surface theory. That is, z =z (S, V) constructed
from [(S,¥V),U,e(S, V)] by the fundamental theorem of
surface theory cannot be identified with the original equili-
brium surface U= U(S,V) unless the former has positive
Gaussian sectiondl curvature everywhere (a necessary but
not sufficient condition).

(4) The Gaussian sectional curvature K (S, V) constructed
from the Riemannian metric tensor g,g(S,¥V) = Uug(S,V)
must be non-negative. This assumption leads to a ‘‘new
class of thermodynamic inequalities’’ involving second and
third partial derivatives of the thermodynamic potential
U(S,V) [Ref. 6, Eq. (5.3)].

(5) The matrix U,g(S,V) should be adopted for what it
is: a description of the curvature of the equilibrium surface.
A reasonable notion of distance in the space R*= (U,S,V)
of thermodynamic variables then leads to an induced
Riemannian metric which is fully compatible with the curva-
ture properties of the equilibrium surface. This is the point
of view presented in Ref. 6 (Sec. VI).

Each of the first three assumptions described in the
preceding paragraph violates one or more of the fundamen-
tal results of classical differential geometry: Gauss’s theore-
ma egregium, the Gauss-Codazzi compatibility equations, or
Bonnet’s fundamental theorem of surface theory. These
three choices are unacceptable, as they require abandoning
the rigidity of classical differential geometry. The fourth as-
sumption leads to a set of ‘‘new thermodynamic inequali-
ties,”” which are not only unrecognized in thermodynamics,
but which are also not satisfied by a standard thermodynam-
ic model.!* This leaves only the fifth approach, which is

fully internally self-consistent, obeys the theorems of classi-

cal differential geometry, and which predicts no new ther-
modynamic inequalities.

In the case of n > 2 independent extensive variables the
differences between our two approaches become even more
pronounced. In the approach which I have previously
described,® the equilibrium surface is considered as embed-
ded in R"*!, A metric is placed on R”*! and a Riemanni-
an metric is induced on the surface. Typical texts® show
that the n-dimensional Riemannian space so constructed
can be embedded in R”*! and identified with the initial
surface. In the approach proposed by others,%1%13 the
Riemannian metric on the n-independent variables is not
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induced but imposed. The nontrivial theorems of Janet and
Cartan®’ only guarantee that this Riemannian space can be
locally embedded in R’ ¢t=n(n+1)/2. These au-
thors® %1213 claim that their surface can be embedded in
R”*+! No proof of this is offered; indeed, not even a hint
is given that this generally cannot be done.*’ Thus, previ-
ous authors fail to substantiate their claims in two ways:
(1) that their n-dimensional Riemannian surface can exist
in R"*!, and (2) that its curvature properties conform to
those of the equilibrium surface.

Many claims have been made that the Riemannian sur-
face [(S,V),U,p(S, V)] can be identified with the equation
of state surface U= U(S,¥) in R>, but no proofs of this
equivalence have been offered.®% %13 It is not sufficient to
claim this equivalence; a proof must be provided, following
the standard procedures of differential geometry. The mes-
sage of a preceding® and of the current work is that such a
proof is not possible; that the two surfaces cannot in fact be
identified. Any choice of Riemannian metric tensor to mea-
sure distances in the equilibrium surface must lead, through
the Riemannian curvature tensor, to a Gaussian sectional
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curvature which is everywhere positive (semi)definite if that
choice is not to violate the second law of thermodynamics.
Both Ruppeiner and Horn fail to recognize this in their
Comments.
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APPENDIX

We here briefly discuss two other points raised by Horn.
Since a potential (constrained energy) rather than the inter-
nal energy was used in Ref. 6, all first partial derivatives
vanish at the equilibrium. Horn’s Eq. (2.6) therefore in-
volves only second partial derivatives when evaluated at the
equilibrium. Horn’s Eq. (3.11) is not dimensionally correct.
When this equation is made dimensionally correct by the in-
troduction of suitable scale factors [Ref. 6, (6.2)], the ‘‘er-
ror>’ he finds in Ref. 6 (6.5) disappears.
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