Letters to the Editor

G(t) = A exp(~ 6D,t) + B G1)(¢) exp[—(D, + 5D,)t]
+C GE2) exp[-(4D, +2D,)t] (6)
with
A=3(3cos?8-1),
B=3sin%§cos?d ,
=2sin'g,

where 8 is the angle between the relaxation vector and
the axis of the symmetric top, D, is the rotational dif-
fusion constant about the symmetry axis, and D, is the
rotational diffusion constant about an axis perpendicular
to the symmetry axis.

If the internal rotation is treated by the extended dif-
fusion model described above, the internal correlation
functions are given by Eq. (1). Then, the overall re-
orientational correlation time defined as

7, = fo "6 at M

can be evaluated in the reduced form to give
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with

1
Fy=5 V1/2 exp(Y?) erfc(Y,) ,

Y, =[r}+6DF+ (D} -DH /W2
and

DX=VI/%sT D,, a=1,2 .

This expression is valid over the entire range of -r}"
values and one can determine 7§’s from experimental
values of 7 without any restriction on the range of
validity.

In the internal rotational diffusion limit, the overall
reorientational correlation time can be reduced to a
more familiar expression as
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with 7} and 47} the rotational diffusion limits of the in-
ternal correlation times according to Eq. (5). Also, in
the internal free rotation limit, 7¥ can be readily re-
duced to

T:=$ +B Vn/2 exp[(D} +5D7) /2] erfe[(D} +5D%)/v2)
2

+C V1/8 exp[(4D¥ + 2D})?/8) erfc[(4D¥ + 2D¥)/V 8] .
(10)
This expression can also be obtained from the beginning
by introducing the Gaussian functions for the internal
free rotational correlation functions in Eq. (6).

The above results may be applied to magnetic relaxa-
tion of a symmetric top molecule in liquid state to eval-
uate the internal correlation times and the degree of
inertial effect.
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Higher thermodynamic partial derivatives?
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A simple algorithm was recently presented! for com-
puting thermodynamic partial derivatives. This algo-
rithm depends on the interpretation of the standard lin-
ear response functions (e.g., Cp, ap, B;) as matrix
elements of a linear susceptibility tensor. The algo-
rithm is, therefore, valid only in the linear regime
(“linear” algorithm), i.e., for the computation of first
partial derivatives of thermodynamic variables and
second partial derivatives of thermodynamic potentials,
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The present work presents a simple “nonlinear” algo-
rithm for computing higher thermodynamic partial
derivatives (e.g., 8°V/8S8T). The nonlinear algorithm
depends only on one of the inputs to the linear al-
gorithm and on an elementary theorem of calculus (chain
rule). This theorem states that if »*, i=1,2,..,,n
and y*, =1, 2,.,.,n are two coordinate systems on a
manifold (e.g., equation of state surface) at a point,
the differentials dx?, dy®, and the partial derivatives
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8/dxt, 8/8y* are related as follows:

dx'= Z; dy*Jt, , (1d)
a=
) - )
8y°‘ =‘Z=;J: ax! (lp)

The linear algorithm is used to determine the linear
transformation (nxx matrix) J}=8x%8y® To illustrate
the nonlinear algorithm, we compute 8%V /aSeT for a
simple single-component fluid. The result will be ex-
pressed in terms of the linear response functions Cp,
op, Br, and their first partial derivatives with respect
to T and P.

(1) Identify the two independent coordinate systems,
These are (x!,x%) =(T, - P) and (3!, y}) = (T, S).

(2) Determine the linear relationship among the dif-
ferentials (dT, ~dP) and (dT,dS). This is easily done
using the linear susceptibility tensor

CP
ds T Vap dT
- . (2
dV Vap VBT -dP

The desired linear relationship is

dT 10 dT
<ds>= Cp/T Vap> -dP ) ' (31)

Inversion of this relation leads to
daT 1 0\ /dr
-dP ) T\Co/T Vap ds

1
0 daT
-Cp 1 ds (3ii)

TVap Vap

and transposition leads to the desired linear relation
of the form (1d):

"

1 _-.(_:E
TVaP
(dT, —-dP)=(dT,dS) 1 . (8iii)
0 Vdp

(3) Use Eq. (1p) to obtain

o U\

9 _ ap -
B = 5 1 5 . (3iv)
8S Var oP

(4) Compute:
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=Vap = (Cp/T)(Br/ap) » (3v)

(_B%> [( %)J - 751.; (%)T{Va,, ~(Cp/TNBr/ap)} .
o G’;)T In(Veyp)

o () (G2) - e

The following remarks are useful;

(1) This algorithm is applicable to systems described
by any number of independent thermodynamic variables,

(2) This nonlinear algorithm includes the linear al-
gorithm as a special case. This can be seen by com-
paring Eq. (3v) with the result of (3iv) in Ref. 1.

(3) Once the linear transformation (1p) between par-
tial derivatives in the “new” and “old” coordinate sys-
tem has been obtained, thermodynamic partial deriva-
tives of arbitrary degree may be computed.

(4) Functions of thermodynamic variables [e.g., o
=o(T, P), 0=0 along a coexistence curve] can be chosen
as independent variables. In the neighborhood of an
equilibrium, a linear relationship exists between the
differentials of the new and old variables (e.g., do
= ~dP+mdT). This linear relationship is used
in Eq. (1d) to compute an expression for 8/3c.

(5) Partial derivatives involving one or more of the
thermodynamic potentials among the independent vari-
ables may be computed using this algorithm, These
calculations can be carried out by a variety of methods,
including those described in Ref, 1.

(6) A partial description of the computation of higher
thermodynamic partial derivatives has previously been
given by Shaw. ? This description extends only one de-
gree beyond the linear regime (i.e., second deriva-
tives of thermodynamic variables, third derivatives of
thermodynamic potentials), is applicable only to simple
single component substances described by two indepen-
dent variables (n=2), and depends extensively on tables.
The present nonlinear algorithm suffers none of these
defects.

(7) Shaw also tabulates partial derivatives of the form

w ()] @

The present algorithm can be used to compute partial
derivatives of the form (4) by first applying the non-
linear algorithm to determine [8/8y, 8/8z] in terms of

a convenient set of partial derivatives (e.g., 8/97T,

-~ 9/8P), followed by a second application of the al-
gorithm to determine [8/8w, 8/87] in terms of the same
convenient set of partial derivatives. In general, the
nonlinear algorithm must be performed once for each
new coordinate system introduced,

(8) This algorithm for computing partial derivatives
beyond the linear response regime is applicable to any
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physical system whose equation of state manifold is
sufficiently smooth. In particular, it is applicable to
nonequilibrium systems in the linear and nonlinear re-
gimes,
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The rotational state distributions in the product mole-
cules for the process:

AT*(PPy ,) + Ny(X 'Z3) ~ Ar(1Sp) + N} (C°I, , v’ =0,1)

have been determined by spectroscopic observation of
the fluorescent light (N¥, C ~ B) emitted at the intersec-
tion of supersonic molecular beams of the reactant spe-
cies. Previous measurements of the v’ =0 distributions
have been reported.! These have now been repeated at
relative collision energies of 0,161, 0.089, and 0.076
eV and extended to v/ =1,

The apparatus has been described in detail in the
earlier paper.! The data collection system has been
considerably improved, however, by the installation of
a stepping motor to rotate the grating of the monochro-
mator and the use of a multichannel scaler for storage
of photon counts. The system is operated in synchro-
nization with a mechanical chopper which interrupts the
N, beam. Background counts are subtracted for each
chopper cycle and the resulting signal accumulated in
a separate channel at each wavelength. This has made
it possible to utilize longer counting times with subse-
quent increase in the precision of the results. The °P,
and *P, states of Ar in the beam are assumed to be
present in the statistical ratio of 5: 1.

Figure 1 shows the measured band profiles (10 A
resolution) for the two C~ B bands 0-0 and 1-0, at
0.161 eV relative kinetic energy. The vertical lines
are the experimentally determined intensities with
lengths appropriate to the standard error. The solid
lines are computer generated spectra.? In the case of
the 0-0 band, a Boltzmann distribution of the ¢’ =0 ro-
tational levels was found to give the best fit at all three
relative energies. There is an overlap of the 1-1 band
extending from about 3350 A to lower wavelengths., In
the computer generated spectrum, we assumed the pre-
viously measured! »' =0/2' =1 population ratio 3.3 with
a rotational population for ¢ =1 as determined from the
analysis of the 1-0 band. In the case of the 1-0 band,
the overlap of the 2-1 band is more serious and is re-
sponsible for the hump at 3135 A, In generating the
best fit to this spectrum we took the v’ =2/v' =1 popula-
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tion ratio to be 60/290 as determined by Krenos and Bel
Bruno,® and obtained a best fit to the rotational popula-
tions using a shifted Chebyshev polynomial series. The
series was cut off after the third term, since the sta-
tistics indicated that no further information was gained
by adding additional terms.

Figure 2 shows the population distributions obtained
as described above, The dashed curves are “golden
rule” calculations.! Arrows on the abscissae indicate
the maximum J’ allowed by conservation of energy. In
the case of »* =0, it can be readily seen that the golden
rule greatly overestimates the rotational excitation as
noted previously.! The “temperatures” corresponding
to the rotational distributions obtained are 2200, 1600,
and 1700 +100 K at 0.161, 0,089, and 0.076 eV. These
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FIG. 1. Measured band profiles. The solid lines are computer-
generated best fits to the data,
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