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The general analysis of phase equilibrium in heterogeneous systems is considered from an abstract

geometric point of view. Particular attention is drawn to the thermodynamic “invariants” (or

“symmetries”), which arise as null eigenvectors of the thermodynamic metric matrix and can be associated
with variations which leave the thermodynamic state unchanged. The analysis of these invariants leads to
conditions connecting the thermodynamic field vectors, including Gibbs—Duhem relations, Clausius—Clapeyron
equations, Gibbs-Konowalow laws, and systematic generalizations thereof.

. INTRODUCTION

In foregoing papers,'~* a geometric representation of
equilibrium thermodynamics has been proposed in which
properties of a thermal system are deduced from its
geometrical “image” in an abstract Euclidean vector
space, While the basic features of this formalism are
quite general, attention was often restricted for the sake
of simplicity to systems that are completely homoge-
neous, Thethermodynamics of systems consisting of two
or more distinct phases introduces certain additional
features which it is now our purpose to describe from
the geometric vantage point. The vector- and matrix-
algebraic techniques of the abstract geometric represen-
tation permit one to derive a number of extensions of
the classical Gibbsian analysis of heterogeneous equilib-
rium,® particularly in respect to complex multicompo-
nent systems,

Itl. THERMODYNAMIC INVARIANCE IN
HETEROGENEOUS EQUILIBRIUM

A thermodynamic system consisting of ¢ independent
chemical components and v distinct phases will be asso-
ciated in the usual manner® with a metric space M, of
dimension »=¢ - v+2, in accordance with Gibbs’ phase
rule. Reference extensities X; will be chosen from en-
tropy S, volume V, and mole numbers Ny, i=1,2, ... ,¢,

{Xi}z{s’ V, Nl’ Na, e ’Nc}; (2-1)

while the associated reference field variables R, are
temperature 7, (negative) pressure — P, and chemical
potentials u,, i=1,2, ...,¢, respectively,

{R,}={T,—P, Hi1s Has .--,ﬂ.c}. 2.2)

These ¢+ 2 fields and extensities are conjugate in the
usual sense,

R,=(dU/3X)x, i=1,2,.. 2.3)

through the thermodynamic potential U, the internal en-
ergy. Numerical values attained by X, for the particular
state in question will be labeled &;. In addition, we let
X denote the extensive variable belonging to the iso-
lated Ath phase, with associated numerical value £,

We suppose in the usual manner® that the phases are so
large, and of such a shape, that surface and interfacial
effects can be neglected relative to bulk-volume effects,
so that

.y C+ 2,
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(2.4)

v
X;= Z; Xta): £ = Z 5!0')-

A=l

Each £V (i=1,2, ..., c+2) is in turn proportional to the
total extent of phase A (for example, to its volume) in
accordance with the assumed extensive character of
these variables.

Because our treatment has heretofore ascribed to the
Gibbs phase rule the role of a primary empirical law,
the extensive character of the variables X, (or, rather,
a form of generalized homogeneity property of the ther-
modynamic potential U with respect to these variables)
could be deduced as a consequence.? However, one
could equally well follow the traditional track in taking
as empirical laws (i) the bivariant (»=2) character of a
simple homogeneous fluid, and (ii) the extensive proper-
ty of U and of each X;; from these assumptions the full
phase rule, »=c-v+2, results as a deduction, as is
well known. For present purposes, the distinction be-
tween these formal orderings is unimportant, and we
proceed on the usual basis that both the phase rule and
the extensive character of each X, represent established
empirical facts.

With the c+ 2 fields R, of Eq. (2.3) we may associate
corresponding vectors |®;) of 9%,

dR,— |®,), i=1,2,...,c+2 (2.5)

and a corresponding Gram (metric) matrix 6'*2’ of
order c+2,

(G(“Z))”:((Rilaj), i;j:l', 2’ LR ’C+21 (2-6)
where, as usual,
(®;|®,;)=(8R;/5X )y . 2.7

The dimensionality » is reflected in the rank (number of
nonzero eigenvalues) of the Gram matrix,

r=rank(6“*¥)=c-p+2, 2.8)
thereby showing that 6°*?) has exactly v null eigenvec-
tors which we denote by n™, 2=1,2, ..., »,

eIy _o,  A=1,2,...,v. 2.9

Of course, any linear combination of these p vectors is
still a solution of Eq. (2.9), so that the final choice of
v such linearly independent null eigenvectors is to this
extent a matter of convenience.
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560 F. Weinhold: Metric geometry of equilibrium thermodynamics. V

Let us examine the effect of a thermodynamic “change”
in which each X; is altered by an amount proportional to
the corresponding component of r)"",

dX;=n®, i=1,2,...,c+2. (2.10)

The usual expression for the associated field changes
dR,,

+2 9R
dR =§“r(——t> dx
= AT Y it

then shows, in conjunction with (2.9), that each dR,;=0,
and thus that no change of thermodynamic state occurs
in the process described by Eq. (2.10). For this reason
it is natural to refer to the vectors 7™’ as invariants

(or symmetvies) of the thermodynamic system, since
they correspond to operations (displacements of the X,)
which produce no response in any of the field variables
R, and thus leave the thermodynamic state unaltered.’
A familiar example is the uniform scaling of each X;

by an arbitrary positive constant,

@.11)

Xy =2X;=2§;, 2.12)

which merely leads to a larger or smaller sample of

the same thermodynamic state, and is thus without
thermodynamic significance. The invariant of Eq. (2.12)
was associated in Ref. 2 with the ordinary Gibbs—Duhem
equation, but we now wish to consider in a systematic
manner those additional invariants 7*’ which arise in
multiphase equilibria. As shown by Eq. (2.9), each
such invariant leads to a linear combination of field vec-
tors which vanishes identically in 9,

+2
Zn;“laz,):o, A=1,2,...,v,
{=

reflecting the linear dependence of the c+ 2 vectors in
the r-dimensional space.

(2.13)

In accordance with Eq. (2.8), it will be possible to
choose a nonsingular principal submatrix 6= 6"’ of
order v from G***?),

@)= (R, | ]y,
G=det|G| #0.

(2.14a)
(2. 14p)

4,j=4,2, ...,7r,

The v extensities X,_,,1, ... , X thereby deleted from
consideration will be regarded as scale factors having
fixed values in all thermodynamic derivatives, thus ef-
fectively suppressing the spurious degrees of freedom
associated with the invariants #*’. The remaining »
vectors |®,) permit the construction of the conjugate
basis |®,), satisfying

@ |®p)=3,,

The conjugate vectors represent the conjugate extensi-
ties X, in the manner of Eq. (2.5),

ij=1,2, ...,7. 2.15)

dx,— |®)=|x,), i=1,2,...,7, (2.16)

and give rise to the conjugate Gram matrix G,

(G){j:(G-1)j{=<mil(R'j>=(%) s ,j=1,2,...,7.
/e 2.17)
Of course, the subscript R in Eq. (2.17) denotes con-
stancy of the v — 1 R,’s (k #7), and of the v scale factors
X, X_,p, during the partial differentiation.

g=vly 0y

til. NATURE OF THE THERMODYNAMIC INVARIANTS

The physical significance of the v thermodynamic in-
variants 7, A=1,2, ..., u, canbe appreciated in a
simple manner. As was shown in Ref. 2, the invariant
7' associated with the usual extensive property of each
(total) X, and of (total) U has the elements

M), =&, i=1,2,...,c+2. (3.1)
This equation shows, as was noted in connection with
Eq. (2.12), that multiplication of each X; by a common
proportionality factor merely scales the over-all size of
the system, but does not change its thermodynamic
state. The spurious “degree of freedom” associated
with such scaling can be suppressed by fixing some X,
as a scale factor. The invariant (3.1) may be referred
to as a “Gibbs—Duhem invariant” to suggest its close
association with this ordinary form of scaling.

For simplicity, suppose now that we consider a two-
phase system of one chemical component (c=7=1, y=2),
and that the total mass N is chosen as the initial scale
factor X, ,=X; to suppress the Gibbs—Duhem invariant
7. The remaining two extensities X;=S, X,=V must
still harbor an additional invariant #*), whose physical
origin can be seen in Fig. 1. The figure shows two sam-
ples of the same two-phase thermodynamic system which
have been arranged to have the same total N, but differ-
ent Sand V. We can write changes in S, V, N in terms
of changes in the separate liquid (1) or gaseous (g)
phases as

AS=AS+AS,,

AV=AV,+AV,, 3.2)

AN=AN,+AN,.

However, the allowed changes that connect these two
samples must be such as to maintain constant molar
volumes and entropies in each phase; e.g., must be
such as to alter the extent, but not the state, of either
phase; therefore,

/.

FIG. 1. Two heterogeneous “samples” (of the same equilib~
rium state) having 2 common value of N, but different values of
S and V; interconversion of such samples is not regarded as
having thermodynamic significance.
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AS, S AS_ S
AN, N,” &N, N,’
AV, ¥V, AV, ¥, (3.3)
AN, N, AN, N’
AN=AN,+AN,=0.
With these restrictions, Egs. (3.2) are
AN
AS:—LNlNg (NS, - NS,
(3.4)

AN.
AV=F17V-L(NSV1—N1V3),
4

AN=0.

In accordance with Eq. (2.10), the second invariant can
therefore be taken as

NS, - N,S,
NV,-NV, |,
0

n(Z): (3.5)

whereas the Gibbs—Duhem invariant is, in this same
notation,

S+ S,
VitV
N,+N,

7o = (3.6)

Note that the second invariant 7 does not correspond
directly to any simple homogeneity or “scaling” property
of the thermodynamic potential U (as did 7''?). Never-
theless, the results of Ref. 2 show that Eqs. (2.9),
(2.13) might have been interpreted as arising from some
generalized homogeneous behavior of the thermodynamic
potentials. Such an interpretation, however, tends to
obscure the simple physical origin of the symmetry as-
sociated with 7,

Since linear combinations of invariants are themselves
invariants, we may prefer, instead of (3.5) and (3.6),
to work with the combinations 7", 7‘® defined as

51
1
"7(1)=N+N(N1’Tm+n(2))= v, |, (3.7a)
1 4
N
SB
1
(@) _ M) _ pe@yy _
M A O @.m

Comparing with (3.1), we recognize that ‘" and 7'®
have the form of Gibbs-Duhem-like invariants for the
individual phases 1 and g, but the vector equations (2.13)
to which they give rise refer now to field vectors of the
composite system rather than to those of individual
phases.

The foregoing arguments can evidently be extended to
the general case of v phases, with the result

@™, =P, a=12, . ..,v, i=1,2,...,c+2.

(3.8)

Thus, the v invariants of the full Gram matrix 6'**?
arise in a simple manner from ordinary homogeneity
properties of the individual phases, and Eq. (2.13) be-
comes a set of v vector equations connecting field vec-
tors |®,) of the composite system,

25}”!@0:0, A=1,2,...,v,
i=

which may be compared with geometric Gibbs—-Duhem
equations for the individual phases,?

(3.9)

c*2

Z;ii”la.f“):o, r=1,2,...,v,

(3.10)

written in terms of the field vectors 1&’) of phase A.
Equations (3.9) are the key vector relationships charac-
teristic of heterogeneous equilibrium.

For completeness, we give the form of Eq. (2.13) for
the special invariant of Eq. (3.5),

?j (E0E@) — eBE |, =0,

noting that this form applies specifically to a two-phase
system with X_,, as scale factor. Of course, Eq. (3.11)
is itself a ready consequence of (3, 9), as we should ex-
pect. Generalizations of Eq. (3.11) for v>2 will be de-
rived in a more convenient form in Sec. IV.E,

(3.11)

1V. COEXISTENCE CONDITIONS FOR MULTIPHASE
EQUILIBRIA

A. Vector equations among field vectors in composite
systems

The general equations (3.9) imply certain connections
among the thermodynamic field variables when two or
more phases are in coexistence. To derive these rela-
tionships, we introduce a special notation for the » “ex-
cess” fields I&),

I8)=|®.0, k=1,2,...,v (4.1)
and the associated “excess” extensive values &),
‘:h)r__ 1(':;)(’ k=1,2,...,v 4.2)

to distinguish them from the basis fields |®,) and exten-
sive values £, i=1,2, ...,7». The excess extensities
E™ are the “scale factors” of the composite system,
and may be exhibited in a vX v scale-factor matrix L,

(l:)xx=A;§)): K:A=1; 2) cve gV, (4- 3)

while the basis extensities g§" are similarly arranged
in a yX7 matrix L,

(L)M=£?)’ r=12,...,v, i=1,2,...,7. (4.4
Equations (3.9) thereby become
v ~
> Whleds 3 Whld)=o0 (4.5)
i=1 K=

for each 2 =1,2, ..., v.

I Lis nonsingular, the y homogeneous, linear vector
equations (4.5) can be solved immediately for the v ex-
cess fields I(ﬁ,‘) in terms of the chosen independent set
I®,) of v basis fields. When each of the vector equa-
tions (4. 5) is multiplied by (I:‘l)x.,‘ and summed over X,
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562 F. Weinhold: Metric geometry of equilibrium thermodynamics. V

there results

|(§'x>=-§(7)x{|(ﬂ{>’ K=1,2,...,v, (4.6)

where the coexistence coefficients (¥),, are given by
y=LL. 4.7

The solution (4.6), (4.7) cannot be used directly if L
is singular, but in this case the chosen |®,) represent
an improper set of “reference fields” which fail to span
the r-dimensional space. Indeed, the requirement

det| L] #0 (4.8)

is a necessary condition for the linear independence of
the I®,), as can be seen by multiplying each equation X
of (4.5) by the xth element of any proposed null eigen-
vector of L and summing over . Thus, if condition
(4.8) seems to fail, it is only necessary to renumber
the fields (that is, make some new division into “refer-
ence” and “excess” fields) to make (4.6)-(4.8) valid.

B. General form of the coexistence coefficients

The explicit solution (4, 7) can be brought to a useful
alternative form after introducing the expression for the
inverse scale-factor matrix,

(LY, = Le5t/det | L] 4.9)

(f,,f,‘ff denoting the cofactor of the kX element of ﬁ), to
obtain
|4
(i =det|C| 71D £RLT (4.10)
=
The summation on the right-hand side of Eq. (4.10) can
then be recognized as the expansion (down the Aith col-
umn) of a determinant which is like det|L| except that
each (L),, is replaced by £ in column . If we now
let 1, i,‘ denote y-component column vectors (columns
of L and f.) whose successive components are labeled
by the (superscript) phase numbers,

) D
13 p
E;Z) £(2)
F K
;= . L= . ) (4.11)
3 N

these two determinants can be written in an obvious no-
tation as

det|C| =aet|id, -+ 1,],

v
S eoist=det|l; .- oLl - 1] .
k=1
Such expressions lead us to represent Eq. (4.10) in a
somewhat symbolic form,

deti;--- 1,10, ---1,1
det 1,1, .- 1,1 ’

which is the desired solution. According to this expres-
sion, the coexistence coefficient (¥),; is found by re-
placing the Ath column of L by the ith column of L and
evaluating a ratio of substituted and unsubstituted deter-
minants. An explicit alternative representation can be

(Y)xi = (4.12)

written in terms of the antisymmetrizer operator @,
which works on superseript phase labels according to
the prescription

A(l) B(l)"' Z(l)

A(Z) B(Z),,, Z(Z)

a{ADB® ... ZWl=det (4.13)

A(v) B(V) e Z(”)

for a general product AV B® -.. Z®): the solution (4.12)
is then

a{giﬂ)nvﬂg(“)}
7) - v“* = K
Phs a{ny &}

valid for each A=1,2, ...

(4.14)

,vandeachi=1,2, ... ,7.

C. Slopes of coexistence curves: Generalized Clausius-
Clapeyron equations

The coexistence conditions (4.6), which express the
xth excess field |&®,) in terms of chosen basis fields |®,;),
can also be written in terms of the conjugate vectors
I®,)=1%;). With the usual formula [cf. Eq. (3.2) of
Ref. 3]

|(Ri>: Z; (G){j‘mj>y (4.15)
one obtains
‘@{k>:_i;(yc)xilfxi)9 K:l,z, P (416)

Scalar products of each |®,) with the basis fields |&®,;)
and conjugates 1%;) can then be evaluated with ease
from Egs. (4.6), (4.16) and the biorthogonality relation
(2.15). One obtains immediately

3R,

CALRE (ﬁ); =M (4.17)
@@= <§§§>x= - (¥6)i » (4.18)

for all x=1,2, ...y, and i=1,2,...,7. Similarly, the
scalar products among the excess fields |&,), I&,) be-
come (for x,x=1,2, ..., )

A A 9R 9R
R IR, = [ —I = = = ycyt
< K‘ )L> (a;(r+7t)x (a;f'ﬁk)x ( )K)\ )

With the explicit forms (4.12) or (4. 14) for the ¥ coef-
ficients, Egs. (4.17)-(4.19) become convenient formu-
las for the slopes of coexistence lines in general phase
diagrams, valid for thermodynamic systems of arbitrary
numbers of phases and arbitrary chemical complexity.
Notice in particular that the derivatives (4.17) among
field variables can be evaluated solely in terms of the
coexistence coefficients (i.e., in terms of extensive
properties £ of the separate phases) without reference
to any response functions of the metric matrix 6. It
would be interesting to examine experimental thermo-
chemical data with the help of such formulas in order
to test their compatibility with broad thermodynamic
principles.

(4.19)
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D. Some special cases

It may be of use to examine the forms assumed by the
above equations in a few important special cases:

For the trivial case y=1 of a homogeneous system,
Eq. (4.14) reduces to
£,
(Y)Ii =_L’
'gnl
and Eq. (4.6) merely recovers the vector form of the
Gibbs—Duhem equation for the single phase, as we
should anticipate

i=1,2,...,7, (4. 20)

For a pure two-phase system (=2, v=c=1), we may
choose variables in the usual manner as

R\=T, Ry=—-P, Ry=yp,

(4.21)
X,=S, X,=V, X,=N.
Equation (4. 14) then becomes
S(l) N(l) V(l) S(l)
S(Z) N(Z) V(z) S(z)
(7)11 = 1% ) N ] (7)z1= VvV ) N ’ (422)
V(Z) N(Z) V(Z) N(Z)
and Eqgs. (4.17) are therefore simply
dP S(I)N(Z) _N(l)s(Z)
AT VON® _ yOpE s (4.23a)
W@ _ i) o)
S (4.23b)

4T VIONB _NOye -

The first of these can be recognized as the ordinary
Clausius—Clapeyron equation, while the second is an
analogous equation determining the slope of the coexis-
tence curve in the u7T plane, These equations in turn
imply the slope of the coexistence line in the pP plane,

dIJ. S(I)V(Z)_ V(l)s(Z)
4P SOINBT gl -

(4.23¢)

Another special case arises in univariant systems,
=1, where the number of phases v is one greater than
the number ¢ of components. For this case Gibbs found
the explicit determinantal solution,®

[$)) 1) )
S NI ... N
S(Z) NfZ) - NéZ)

dP_18" N{...N®
ar |\v"Y NP L..OND

@) A @)
1% N ... N

(4.24)

) (v) {v)
\74 N1 e Nc

which is precisely the form given by Egs. (4.17), (4.12).
The Clapeyron Eq. (4.23a) is itself the simplest in-
stance of this result for c=1.

E. Stationary fields and Gibbs-Konowalow laws

The equations (4.6) show how any »+ 1 of the field vec-
tors are related in the heterogeneous equilibrium of p

phases. Let us now assume for definiteness that these
are labeled

|(Rl>5 |(Rz>, LICICR ] |®r+1>

and write for n; the vX v determinant
«a Ay gy, ()
i ! ‘Er+2 £r+3 55;2
@ @ ... @)

42 r+3 c+2

n=det| . . . . (4.25)

E(V) ) E(V) cee gV
i r+2 r+3 c+2

This permits one to write each of Eqs. (4.6) in the more
symmetrical form

r+l
Z M ‘ ®;)=0,
1

as can be easily verified from the form (4.12) of the co-
existence coefficients. Equation (4, 26) is obviously re-
lated closely to the ordinary Gibbs~Duhem equation, to
which it formally reduces when y=1, and might be ap-
plied to examine the consistency of thermodynamic data
in an analogous manner.?

(4.26)

By virtue of their additional invariants, multiphase
systems can exhibit an interesting variety of behavior
which is not possible in homogeneous systems. In par-
ticular, the determinantal coefficients 7; can take on
either sign or can vanish identically when the phase com-
positions have certain special values. According to Eq.
(4.25), n, must vanish whenever the determinantal row
or column vectors become linearly dependent, e.g.,
when there exists some linear combination ¥ of the vari-
ables X5, X,,3, ..., X, such that Y® = t® for every
phase A, Thus, for example, when v=2, 7, will vanish
when values of £, and £,,, are proportional in the two
phases. The vanishing of 7, signals a type of redun-
dancy of the extensive variable X;, as though the system
could be prepared from one fewer chemical component
than had been supposed. However, the vanishing of an
7n, could arise from such special linear relationships
connecting entropies or volumes, as well as the compo-
sition variables.

To see the consequences of some vanishing #;, let us
introduce a new set of » fields |®,) which coincides with
the old but for a single member |3},

‘ @ii> = lﬂ;) ’
l (§'7> = ‘ E] > ’
where |3) is arbitrary so long as the resulting set is
complete, By “complete” we mean of course that the
{®,) should span all v dimensions; whether this is so

may in turn be checked by examining the rank of the as-
sociated Gram matrix,

rank{(®, | &)} =7.

i=1,2,...,r-1

(4.27)

4.28)

Thus, the »~-1 vectors I®,), ..., |&,.,) must themselves
span ¥ - 1 dimensions. In view of (4.28) we may now
introduce the associated conjugate vectors |%X;) satis-
fying

(@] x=5,,. (4. 29)
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Multiplying Eq. (4.26) on the left by some (fi, |, one then
obtains

-1
IO A CIALRIT MEALINE .30)
and in particular for j=v,
0= nr<§ | (Rr>+ n'nl(; l (Rr+1> ’ (4 31)

where |3) denotes the conjugate of |3). Equation (4.31)
may also be written in the form

3R 3R,
0-n(5%), ma(%55Y),

where the vector subscripts denote constancy of Ry, ...,
R,_, in the usual manner.

(4.32)

With the help of Eq. (4.32) it is now possible to es-
tablish some simple theorems concerning the possibility
of stationary points (e.g., maxima, minima, or hori-
zontal inflections) in thermodynamic phase diagrams.

In each case we suppose that R;, R; are chosen from any
set of 7+ 1 field variables (spanning at least » -1 dimen-
sions), and that n; 7, are defined as in Eq. (4.25) for a
system of p coexisting phases.

Theorem 1. If ;=0, then any R, for which 7,#0 is
necessarily stationary with respect to any thermody-
namic change in which the remaining » - 1 fields (e.g.,
all but R; and R,) are held constant.

Theovem 2. H R, is stationary with respect to any
change which alters R, while holding constant the re-
maining -1 fields (e.g., all but R, and R,), then 1,=0.

The proof of these theorems follows quite directly
from Eq. (4.32) and need not be detailed here. Note
that the thermodynamic variable Z could be chosen quite
arbitrarily (for example, as a composition variable for
one of the phases) so long as it is independent of Ry, ...,
R, ;. Various special cases of these theorems were
first deduced theoretically by Gibbs,! then rediscovered
empirically by Konowalow,!! and are often now referred

to as Gibbs—Konowalow laws.!? Such rules relate maxi-
ma or minima in the boiling points of binary and higher
mixtures to the compositions of their phases (which
enter through the determinantal coefficients 7;), and as
such provide the framework for analyzing distillation
processes, azeotropy, and so forth. Vector-algebraic
expressions such as (4.25), (4.26) should make it feasi-
ble to pursue interesting features of phase diagrams
even in quite complex chemical systems.
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