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Vector-algebraic evaluation of thermodynamic derivatives
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A new set of procedures is given for the systematic evaluation of thermodynamic derivatives by
vector-algebraic means. The new procedures are at once simpler and more general than previously
available methods, and require no special tables. General thermodynamic derivatives are evaluated for
the familiar one-component homogeneous fluid (where the techniques are extensively illustrated) and

for multicomponent systems of arbitrary complexity.

I. INTRODUCTION

The systematic derivation of partial thermodynamic
derivatives has been a long-standing problem of consid-
erable scientific and engineering importance. In a typi-
cal case, one desires to evaluate some partial deriva-
tive which cannot be obtained directly from experimen-
tal data, but instead must be calculated from other such
derivatives which are known with sufficient precision.
Unfortunately, the number of possible equations which
can be written among partial derivatives of the common
thermodynamic functions is exceedingly large (e.g., of
the order 10'° for the simplest case of a homogeneous
fluid, with dimension =2),! so that some form of gen-
eral and systematic procedure becomes necessary to
isolate a particular thermodynamic formula of interest.

An early attack on this problem was made by Bridg-
man,? who presented comprehensive tables® from which
many possible derivatives for a homogeneous fluid could
be evaluated. Such tables subsequently became widely
known and used through their incorporation into several
standard texts, * but they lack the flexibility to deal with
all thermodynamic properties which might be of interest
(such as, e,g., saturation properties, or properties
along any other path in phase space), and they become
quite unwieldy when extended to more complex systems.’

A more general and elegant method was developed by
Shaw® which makes use of algebraic properties of Ja-
cobian determinants, and which has now largely sup-
planted the Bridgman tables.” The tables required for
the Jacobian method are both simpler and more easily
constructed than those of Bridgman, and certain possi-
ble extensions to higher dimension (» > 2) have been dis-
cussed.® Nevertheless, the available Jacobian tables
for » =3 show® that such methods rapidly lose their at-
tractive simplicity in more complex systems. In addi-
tion, these tables again lack the flexibility to deal easily
with any but the most common thermodynamic proper-
ties.!°

Several other approaches have been discussed which
bring varying degrees of orderliness to thermodynamic
derivations while obviating the need for special tables.
Such methods may involve special algebraic!! or proce-
dural®® prescriptions, the former group often taking in-
direct advantage of the Jacobian algebra in some simpli-
fied form.
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In the present work we shall describe a new set of
techniques for the evaluation of general thermodynamic
derivatives, based upon a vector-algebraic representa-
tion of the thermodynamic formalism which was pro-
posed in the preceding papers (Papers I-III). ¥~ The
only mathematics required is the ordinary linear algebra
of Euclidean vector spaces. It is felt that these new
procedures significantly surpass previously available
methods in respect to their simplicity, generality, and
ease of extension to complex multicomponent systems.
In particular, Shaw’s method® will be found to arise as
a special case (by no means the simplest) of the present
approach. [Those readers who wish to see how the
method works before studying its origins may proceed
directly to Eq. (3.11) and accompanying examples. ]

Il. GENERAL CONSIDERATIONS

Our treatment will be based directly on the geometric
representation of equilibrium thermodynamics which
was described in Papers I-III. 1*~% The notation and re-
sults of those papers will therefore be adopted freely
without additional comment, and specific equations will
be referred to directly by means of an appropriate ro-
man prefix, e.g., Eq, (II.2.7), etc.

The geometric representation associates an »-dimen-
sional Euclidean vector space I, with a given equilib-
rium system having » “degrees of freedom” in the sense
of Gibbs’ phase rule. Thermodynamic variables R; are
associated with corresponding vectors I®,) in M, whose
scalar products are evaluated in the form

(R, |®,) = (8R,/oR,)z,

where R, denotes the variable conjugate to R, [Eq.

(I11. 3. 3)]. One therefore begins by choosing some basis
set of » reference variables {R;} whose associated vec~
tors span the space 3M,, and constructs therefrom the
associated biorthogonal basis of conjugate vectors |&;)
{the vector representations of the K,) which satisfy [Eq.
(1. 3.1)]

@& |®py=6,, i,j=1,2,...,7. (2.2)

It is assumed that the »(» +1)/2 independent scalar prod-
ucts (2.1) among the basis vectors |®,) are known from
experiment, and that the associated Gram matrix G,

(G)U:((Ril‘ﬁj)i i,j=1,2,...,7’ (2‘3)
is nonsingular [Eqs. (III,2.13)]. As pointed out in Pa-

2.1)
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per III, #(r+1)/2 is the minimum number of independent
thermodynamic derivatives from which one could hope
to describe all the remaining thermodynamic properties;
in many practical applications, the relative experimen-
tal accessibility of such derivatives will fix the conve-
nient choice of basis variables R; in which to carry the
analysis forward,

From the »(» +1)/2 independent elements of G, a fur-
ther set of »( +1)/2 scalar products (and associated
thermodynamic derivatives) among the conjugate vectors
|®,) are found by inverting the Gram matrix G [Eq.

(111, 3.10)],

©1),, = @& |®,)= (R, /R, , (2.4)

to get derivatives in which the R, (rather than the R))
have the role of independent variables. However, from
the 2» variables {R,} and {R,}, one could form as many
as (2¢)! /¥!(r - 2)1 possible partial derivatives having
various combinations of the R; and R, held constant.
Thus, even if attention is restricted to only those deriv-
atives which can be formed from the conjugate R, and R,
alone, the 7(r +1)/2 known elements of (2.3) must serve
to determine a larger number of thermodynamic proper-
ties which may be wanted.'® If one seeks derivatives
involving other functions of the R, and R, (thermodynam-
ic potentials, coexistence coordinates, etc.) from the
few known elements of G, the magnitude of the task in-
creases accordingly.

The flexibility to deal with this latter situation is, of
course, extremely important, In the geometric formal-
ism, these more general variables enter by way of or-
dinary basis set expansions and the accompanying ma-
trix transformations of G. For example, an arbitrary
thermodynamic function X with associated vector [X)
can be expanded in the chosen basis set {I®,)},

7
!95>=Z ci|®y) (2.5)
ial
with coefficients c; given by’
¢, =(®, %)= (8X/0R,)g . 2.6)

Expansions of the form (2,5) will allow one to easily
transform thermodynamic derivatives from one set of
functions to another by the matrix transformation meth-
ods of Paper III.

INl. THERMODYNAMIC DERIVATIVES OF A SIMPLE
FLUID

We shall first confine attention to the simplest case
=2 le.g., a homogeneous, one-component fluid of fixed
mass), which is treated in the Bridgman and Shaw ta-
bles. We seek to evaluate a general partial derivative
D of the form

0= (ax/8Y); , 3.1)

where X, ¥, and Z are some chosen set of state proper-
ties. In order to obtain a general expression for such
derivatives, we suppose that a pair of basis fields R,
and R, with associated conjugates R, and R, have been
chosen. Because of the mutual nature of the conjugacy
relation [Eq. (III. 3.6)], we can write the conjugate of
each R; as

(R))=R, . (3.2)

In this two-dimensional space, we can furthermore de-
scribe the chosen fields R, and R, as complementary,
and let the tilde symbol on R; serve to designate the

complement of R;, so that
fél ':Rz, Rzle. (3.3)

Similarly, the conjugate variables R, and R, are mutual-
ly complementary, so that

ﬁl =ﬁ2, ﬁz :R_l . (3.4)

With these notational conventions, we can uniquely iden-
tify the state variables Z, Z, and Z (=Z) for any chosen
variable Z. For example, when temperature T and
(negative) pressure ~ P are the chosen R,’s,

(m)-(7%)
Rg - P '
with entropy S and volume V the corresponding conjugate
R-(,S’

(5)-G)

then Z, Z, Z, and Z have the significance shown in Ta-

(3.5a)

(3.5Db)

ble I. This choice of notation also allows us to express
the biorthogonality condition (2, 2) in the form
(3]9)=1, (3.6a)
(3]3)=0, (3.6b)

for a general variable Z.

The standard scalar products among vectors |7),
I-®), 18), and |V) are gathered in Table II, expressed
in terms of the standard response functions [see Egs.
(I11. 3. 15)—(I11. 3. 18) for definitions] Cp, Cy, By, Bs, @p,
and I'y. As remarked above, scalar products involving
[$) and [v) {e.g., involving the properties Cp, B;, and
ap) are obtained by matrix inversion from those for
[7) and | — @) (e.g., from Cy, Bs, and I',); the vector-
algebraic procedure will automatically express any de-
sired derivative in terms of the six properties in Table
II, and these expressions may subsequently be reduced
(if desired) to involve only three independent properties
by the identities implied in Eq. (2.4).

In order to evaluate a partial derivative (3.1), one
might attempt to express dZ in the form

dZ = dX + pdY | 3.7

8o that the desired derivative is

(X __&
10-(8}»)2 X

In the geometric representation, Eq. (3.7) is repre-

(3.8)

TABLE I. “Standard” variables.

N © N
“OaNw it

z
T
-P
N
|4

Ny @< N
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TABLE II. “‘Standard” scalar products.

17 -6 (8> v
(71 T/Cy -T/Ty 1 0
(-l ~T/Ty /vy 0 1
(8l 1 0 Cp/T  Vep
{0l 0 1 Vap VB

sented as a relationship among vectors [cf. Eq.
(Im.2.4)],

[3)=x|a)+pnly) , (3.9)

and the coefficients X and | are readily evaluated by or-
dinary vector methods. For example, if we take the
scalar product of Eq. (3.9) with the conjugate comple-
ment vector 13) and use Eq. (3.6b), the result is

0=r(x{3)+p(yl3) ,

s0 that ® is evaluated simply as a ratio of projections of
vector |3) onto the vectors 1%) and |Y),

(_ag) _(x13)
oY/, (Y13
The applications of this equation, which is to be used in

conjunction with Tables I and II, may be illustrated by
some simple examples,

(3.10)

(3.11)

Example: “‘Mixed” derivatives

Equation (3.11) may be employed to evaluate the de-
rivatives

&), G, &) &)
av/, > \av/,* \aT k’ \o7/,’

in which mixtures of field and extensive quantities serve
as independent variables. Noting from Table I that
T=V, and using the “standard” scalar products defined
in Table II, we obtain

(§§> _(SIT)_($1V)_Var_ap
8V/)r (0IT) (VIV) VBr Br °

Similarly, since S=- P,

(2-13) __els)  (—el-e)  Q/vE) Ty
8T/s  (718) (T1-0)  (=T/Ty) TVBs

(3.13b)
The reader may verify in an analogous manner the iden-
tities

(3.12)

(3.13a)

(9-5-) -_Cr (3.13¢)
8V/p TVap ~’

(i’f) Sy (3.13d)
aT), Ty

Example: Saturation properties

The application of Eq. (3.11) to variables other than
the standard S, V, T, and — P can be illustrated with the
saturation properties C, and e, [see Eq. (II1.4.18) and
following],

- (3
CU—T(8T>Q , (3. 14a)

()

g V aT o ’
which involve the “coexistence coordinate” o [Eq.
(I11. 4. 23)],

(3.14Dp)

(3.15)

where 7, is the slope of the coexistence curve. With
T and o as reference fields, the conjugate variables
were found to be [Eq. (IIl.4.25)]

o) =7, |T)+] -0

|7 =[8)-%lv) , (3.162)

|3y =0y , (3.16b)
from which we recognize, for example,

&)= [Ty=]8)=v,|V) . (3.17)

The saturation heat capacity C, is therefore found from

g_q:<§> (818 _{518)=7,(81v) _(Cp/T) =¥, (Vay)
T \oT/, (T15) (TI18) =7, (T1V)  (1)~7,(0

which is the identity

Co=Cp-TVY,ap . (3.18)

The reader may verify the analogous calculation for the

thermal expansion coefficient a,

Q= 0p = Vofr (3.19)

If the scalar products appearing in (3.11) are some-
how inconvenient (for example, because vector 13) is
not readily available), one can return to solve Eq. (3.9)
in other forms.'® For instance, if we take the scalar
product of Eq. (3.9) successively with the vectors |X)
and [Y), the result is

(X|3)=n. 0+ pu(&E]y) , (3.20a)

(Gla)=x(y|xy+p-0 , (3. 20b)
so that (3. 8) becomes

BX\ __(xIY)(Xls) 321

<3Y)z (ylxy (Mlay ’ 8.21)

which is again rather easily remembered or rederived
as the occasion warrants.

Example: Identities among basic response functions

Equation (3.21) is useful in recovering various iden-
tities which connect the entries of Table II, For ex-
ample, from the definition C, = T(85/87T),, we deduce

91=<9§) __{s1P) (S0
T \eT)y (7/8)(TIV)
BRCIOIC IO (Vap)(1)
T THrI-@) (V) T (- T/Ty)(VB,)
which is the identity [cf. Eq. (III, 3.28)]
CyBr=aply ,

and so forth.

(3.22)
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Example: Saturation properties

In treating saturation properties (8X/8Y), with Eq.
(3.21), we note that only o itself (but not & or &) is
needed. Hence, we can return to the “standard” choice
of basis variables from Table I,

<2;>=(—TP)’ (g;):@):(_ip), (3.23)
instead of the special set B
(®)-(0), (B)-C7")(F), e

which was employed in Eqs. (3.16) and following. For
example ¢, is found from
. =<g‘_/) __{UIT(Tlo)__ (0I0)(T10)
T N8T/,  (71VY(TIe) (TIT) (Vo)

(VIO [ (T ) +{ T = @)]
T [y, (0ITY +{VI- @)

(VBg) [y {T/Cy) + (= T/T)]
(T/Cy) [7,(0) + (V)]

== VBT(YO_ CV/FV) s

which, in conjunction with (3,22) above, is again Eq.
(3.19). Equation (3.18) for C, is recovered in an anal-
ogous manner, Note that ¢, could have been evaluated
as easily in the special basis set (3.24) [since V is a
“natural” variable in both (3,23) and (3.24)], but C,
could not.

Equations (3,11) and (3.21) retain their validity even
when X, Y, and Z do not belong to a single set of fields
and conjugates (for example, each might be expressed
as a linear combination of two other reference vari-
ables). In such cases, one can choose the complemen-
tary variables rather arbitrarily, and it often conven-
ient, for example, to define X and Y to be complemen-
tary variables,

X=Y, Y=X, (3.25a)

so that Eq. (3.21) reduces to [in view of (3.6a)]

<g) __{yla)
Y/, (X1 3) °’
which is again a compact and easily remembered form.
Of course, the conjugate variables X and Y of Eq.
(3.25b) must now be defined specifically with respect to
the choice of complementary fields implied by (3.25a),
since, e.g., X is wholly arbitrary until X has been de-
fined.

(3. 25b)

Example: More identities

Since S and V are complementary variables in Table
I, we can use Eq. (3.25b) to evaluate

(ﬁ) __{BIn)_ (elr) (-T/Ty) _Cy
ov/)y " ElTy C (TITY (T/Cy) Ty °

which, in conjunction with Eq. (3.13a), is again the
identity (3.22). Analogous saturation properties such
as (85/8V), are also dealt with easily by Eq. (3.25b).

Example: Joule- Thomson coefficient (3T/3P) p

Analysis of the Joule-Thomson “porous plug” experi-
ment requires evaluation of the derivative (87/3 P), at
constant enthalpy H(=U + PV), Since

dH=TdS+VdP | (3.26)

the vector |30 associated with enthalpy H is simply

i) =T|s)-V|-0) . (3.27)
In terms of the standard variables of Table I, 7 and ~ P
are already complementary variables, so the Joule—
Thomson coefficient is evaluated most conveniently from
Eq. (3.25b):

(g) _ o1 (010 T(uls) - V{vi-@)
8P )y (TIR) (8150 T(sI8)-V(s|-®

T(Vap)- V(1) _

= ——K(Ta -1)
T(Ce/T)-V(0) Cp  °F ’

Other thermodynamic potentials, such as the Gibbs or
Helmholtz free energies, or the internal energy U itself,
can be similarly manipulated as ordinary variables when
expansion analogous to (Eq. (3.27) are introduced.

(3.28)

It may finally be remarked that equations such as
(3.11), (3.21), and (3.25b), which represent partial de-
rivatives as simple ratios of geometric projections, make
it easy (as well as largely superfluous) to recover vari-
ous identities among partial derivatives which are often
taken as starting points in thermodynamic manipulations.

IV. GENERAL SOLUTION FOR r=2 AND RELATION TO
JACOBIAN METHODS

In orderto obtainthe ratio D =— u/x of coefficients from
the vector equation (3.9Y in its most general form, let
I@) and |®) (corresponding to thermodynamic variables
A and B, respectively) represent arbitrary vectors in
the two-dimensional space. The successive scalar prod-
ucts of these vectors with Eq. (3.9) then lead to the lin-
ear equations

(afsy=x(a|x)+ulcly) ,
(®]3)=2(®|X) + p(®]Y) ,
which can be solved in the usual manner
A\ _[{alx) (aly)\/{als)
(u)"(«mar) <<Bl‘y>) ((rma)) ’ 4.2)

for the unknown coefficients A and u, provided that

(4.1a)
4.1b)

(a|x) (®]Y) - (a|y)(®|x)+0 . (4.3)
The desired ratio is then obtained in the form

<2)_() _{xla)(®l3)-(xI®)(al3)
z (Yla)(®I3)-(YI®)(als) °

%% (4.4)

Example: Identities for C,,
From the definition C, = T(8S/57T),, Eq. (4.4) gives

Cy _(s1a)(®lv) ~(81®) (@ V)
T {Tla){(®lV)-(TIB)(a V) ’
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for any A and B (but note that one merely recovers the
definition C,/T=(T!7)! if A or B1is 7). With the choice
A=S, B=V, this becomes

Cy_ (Cp/T) (VBg) = (Vap) (Vap)
T (1) (VBr) - (0) (Vap) ’

which is the identity

Cy=Cp-TVa3/Br (4.5a)
Similarly, the choice A=S, B=- P leads to

oo Co
V14 TVa,/Ty

while the choice A=V and B=- P leads to

Cr=apTy/Br , (4.5¢c)

which was previously obtained in (3.22), Other exam-
ples of such identities {all of which are special instances
of Egs. (11, 3.28)) canbe readily obtained by treating the
other standard response functions in an analogous manner,

(4.5b)

The general solution (4. 4) reduces to the simpler
formsobtained earlier whenwe introduce special choices
for the variables A and B, Thus, the particular choices

A=Z | B=Z , (4.6a)
A=X , B=Y , (4.6b)
A=Y , B=A=X , (4.6c)
lead to Egs. (3.11), (3.21), and (3.25b), respectively.

Another interesting special form of the solution (4.4)
can be gotten if we write the general scalar product
{xX 1Y) in the form

(xlyy=(ax/81)5 , 4.7

which is merely Eq. (2.1) written in terms of the nota-
tion established in Eqs. (3.2)-(3.4) for the two-dimen-
sional space. Equation (4.4) thereby becomes

ox\ _(8x/0A)z (82/8B)z - (02/0A); (3X/8B)z
( )Z ~(oY/04); (82/8B); — (62 /0A); (8Y/0B)3

Yy
 now A and B are chosen as complementary variables
in each term

A-B,

)

b4

(4.8)

-

s~111

=4, 4.9)
Eq. (4.8) becomes simply a ratio of Jacobian determi-
nants,

() -2
zZ

Gk (4.10)

where, for example,

G2 G,
s, 2) - 2% 2) (4.11)

94, B) ’

(3 o)

and J(Y, Z) is defined correspondingly (the dependence
on the fixed variables A and B being understood implicit-
ly). Equation (4.10) can be recognized as the basic
equation employed by Shaw® in his formulation of the

Jacobian algebra and tables. Thus, the relative simplic-
ity of Jacobian methods can be understood in terms of
their rather close connection with the underlying thermo-
dynamic geometry. Nevertheless, Eqs. (4.4) and (4.6),
and the examples of Sec. III show that the Jacobian solu-
tion is neither the simplest nor the most general alge-
braic representation of a general thermodynamic deriva-
tive,

V. HIGHER DIMENSIONAL (MULTICOMPONENT)
SYSTEMS

The solutions previously given for »=2 are special-
ized to the extent they depend on the notion of mumal
complementarity of pairs of variables, a convenient no-
tion (and notation) which cannot be carried beyond tweo
dimensions. In a space of » dimensions, a general
thermodynamic derivative O will have the form

D=(0x/0Y)y , (5.1)

where now Z=(2,,Z,,...,,Z,.,) enumerates the » -1
variables held constant during differentiation. As be-
fore, we assume that the Gram matrix 6 is known in
terms of some basis set {R;} (with conjugate basis {R,}),

@), =& R, i,j=1,2,...,7 (5.2)

and that expansions are known for each variable X, Y,
and Z, in terms of the basis variables {R,} or {R,},

Jec) :Z ¢ |®) (ei=@;lo)), (5.3a)
=1

) =3 el |R) (el =@, o), (5. 30)
{=1

etc, for 1Y), 3.

It may first be observed that geometric evaluation of
derivative ® in Eq. (5.1) would become rather simple
if we had made a fortuitous choice of basis variables
{R{} such that the conjugate variables {R;} were

E::Zi 3 ?::1,2,...,‘}’—1

{5.4)
R,=Y ,
since in this case, D becomes
D= (x[®y) = (x| Yy) (5.5)
where Y,
Yz =R, , (5.6)

is the conjugate of ¥ with respect to the choice of the Z;
as the complementary set of variables in (5.4). To
achieve the desired simple form (5.5), we need only
transform from the old conjugate basis {R,} to the spe-
cial conjugate basis {R}} in the usual manner,

R; z, R,
=1 - h=aAa] - , (5.7)

R;-l Zr-l Er-l

R, Y R,

where the matrix A is known from expansions such as
Eqs. (5.3b) for 1Y) and |3,)." The Gram matrix 6’ for
the new basis is then, as usual,
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G'=AGA'=G, , (5.8)
and the usual equation connecting the R’ and R’ is ac-
cordingly

R'=G'R'=GaR’ . (5.9)
The final entry of vector Eq. (5.9) is the desired ex-
pression for ¥,

r-1
Igz>=Z(GA){r I 3i>+(GA)rr qu) s (5-10)
i=1
so that Eq, (5.5) becomes finally
-1
(3’—‘) S@ T+ Y G (X3 . 6.11)
8Y J, =1

Equation (5.11) gives the desired evaluation of the gen-
eral derivative D in a system of » dimensions, ex-
pressed in terms of known geometrical quantities. As
in the two-dimensional case, other expressions for D
would be possible which involve special choices of the
basis set R, It is clear that vector-algebraic expres-
sions such as (5.5) or (5.11) can be applied straightfor-
wardly (for example, through machine computation) to
multicomponent thermodynamic systems of arbitrary
complexity.

Vi. CONCLUSION

The vector-algebraic representation of equilibrium
thermodynamics has been found to lead to new systemat-
ic procedures for the evaluation of thermodynamic de-
rivatives. Likethe Jacobian methods (which arise here
as a special case), these procedures do not require
manipulations of partial derivatives in any intermediate
steps, but instead are strictly algebraic in character,
The new procedures appear to enjoy distinct advantages
over previously available methods (including Jacobian
methods) in the following respects.

(i) Simplicity. The basic formulas are elementary
consequences of vector geometry, so that when their
general origin is understood, they can be easily derived
from scratch in a form suited to any particular need
{though they are easily memorized as well); essentially
no special tables or memorization are required beyond
that necessary to define the basic response functions in
which the final answers are to be expressed.

(i1) Genevality. Thermodynamic variables of quite
general type (thermodynamic potentials, “coexistence”
coordinates, other arbitrary “directions” in phase
space) are systematically accomodated by general ma-
trix transformation methods; in particular, one can
work directly in terms of variables, or combinations of
variables, which correspond to practical experimental
demands,

(éi1i) Ease of Extension. The general techniques can
be easily extended to complex multicomponent chemical
systems, where they again lead to simple matrix-alge-
braic expressions which are in a convenient form, e.g.,
for machine computation,

The new procedures exhibit certain attractive peda-
gogical features as well, While they require a modest
investment in linear algebra, they in turn permit one

to reduce significantly the dependence on formal conse-
quences (identities, chain rules, etc.) of the partial dif-
ferential calculus, This may represent a favorable
trade-off even at the elementary level.
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