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The thermodynamic geometry established in an earlier paper is taken as the basis for an abstract
vector-algebraic representation of equilibrium thermodynamics. In this representation, thermodynamic
field variables appear as abstract Euclidean vectors whose lengths and internal angles describe the
equilibrium properties. A variety of thermodynamic indentities, stability conditions, and other
relationships are derived and shown to have simple and natural geometric significance in the new
framework. The geometric viewpoint is also found to suggest certain lines of development—such as
the use of self-conjugate (“normal”) field variables—with no obvious counterpart in the traditional
differential formalisms. The formal ideas are illustrated throughout with elementary applications to

properties of a simple homogeneous fluid.

. INTRODUCTION

In Paper 1,! it was found that the equilibrium thermo-
dynamics of a given equilibrium state could be formally
associated with the geometry of an abstract Euclidean
vector space. In Paper II,? a geometric Gibbs-Duhem
relation was discussed in connection with possible scal-
ing hypotheses on thermodynamic potentials, It was
suggested! that the abstract thermodynamic geometry
could be made the basis for an alternative representa-
tion of equilibrium thermodynamics, which could aug-
ment or complement the classical formalism., A prom-
inent feature of such a complementary representation
is the natural emphasis on algebraic and geometric con-
cepts (vector algebra of Euclidean spaces) instead of
the analytic concepts {partial differential calculus of po-
tential functions) of the traditional formalism. Itisthe
purpose of the present paper to outline some principal
formal features of a geometric representation, and to
illustrate these briefly for the simple example of a ho-
mogeneous fluid,

tl. THERMODYNAMIC VECTORS AND GEOMETRY

Let us recal!! that a simple thermodynamic system
of fixed scale which consists of ¢ independent chemical
components (in the sense of Gibbs®) and v distinct phases
is to be associated with a real metric space M|, of di-
mension 7,

(2.1)

In the classical Gibbsian formalism,* primary emphasis
is laid on a thermodynamic potential (or “fundamental
equation”), the internal energy U,

r=c—-v+2,

U=U(Xy, Xoyet.), (2.2)

which is a function of a chosen set of extensities X; [en-
tropy S, volume V, mole numbers N; (i=1,2,...,¢),

or independent linear combinations thereof]., A specific
thermodynamic state can then be identified by giving the
numerical value &; of each extensive variable X;; as in
Paper 1, the “point” £ (in a Cartesian phase space) will
be taken as a convenient label for this state. Each ex-
tensive variable X; is in turn associated with a conjugate
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field® function R;,

R;=(8U/8X)x, (2.3)

such as temperature 7T, pressure P, etc. In writing
such partial derivatives, we shall let subscripts such as
X abbreviate the list of arguments held constant for the
partial differentiation, e.g,, each X; for j+#i.

In the geometric representation, the field functions
R; of Eq. (2.3) become of primary importance, inas-
much as they label the vector elements {®;) of the ab-
stract space M, in accordance with the association

dR; & |®,) = |&,E)em,. (2.4)

As (2.4) implies, the full space M, =M, (§), and thus
each field vector |®;)= |®;(£)), refers to the chosen
equilibrium state £ of interest, The metric space I,
is invested with a scalar product (R, |®,;) having the
usual properties®:

(@, AR, + 1®Y = MR, |®) + R, | R, (2. 52)
(®; &)= (& &), (2. 5b)
(®; |®;)=0 (=0 only if |®;)=0). (2. 5¢)

In particular, for arbitrary field vectors |®,), I®,) and
scalars A, M, it is meaningful to form the vector

R+ &) =2 |®)+ |®y),

which is required for the distributive property (2. 5a),
Contact with the classical formalism, and with experi-
ment, is achieved by identifying each scalar product of
M, with one of the thermodynamic response functions’
(heat capacities, compressibilities, etc.) of the system
by the prescription®

<G{i ld:{j> = (aRi /an)X’

where X, is the variable conjugate to R; in the sense of
Eq. (2.3). With the identification (2.7), the abstract
geometry of M, is known from the results of Paper I {o
be fully consistent with the equilibrium thermodynamics
of the given system, In effect, “laws of thermodynam-
ics” become “rules of geometry” [e.g., the axioms

(2. 5a)—(2. 5¢), which give 9, its Euclidean character]
in this abstract representation. Therefore, deductions

(2.6)

(2.7
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which are geometrically valid in 9, must, when inter-
preted through Eq. (2.7), lead to conclusions which are
in all respects consistent with the laws of thermodynam-
ics,®

The Euclidean character of M, permits one to associ-
ate with each abstract |®;) a “length” [®;| in the usual
manner, 8

&, | = (&, |®;)2, (2.8)
Similarly, the “angle” 6,; between abstract vectors |®,),
I®;) is given by the usual formula,

cost;, = (R, |®)/|®; |+ |&]. (2.9)

By virtue of (2. 5a)-(2, 5¢), the lengths and angles thus
defined exhibit all the expected Euclidean characteris-
tics, including the triangle inequality

|®; - & =& - &, ]+ &, - &/, (2.10)
and the Schwarz inequality
®;ley=la;]- |&]. (2.11)

We shall say that two vectors |®,;), |®,) are equal if
their “separation” |®, — & | vanishes, and that they are
orthogonal if (];1®,)=0, In short, the theorems, ter-
minology, and working methods of Euclidean geometry
can be carried over intact into this abstract thermody-
namic domain,

With the help of Eq. (2.7) we may remark briefly on
the general physical significance of the ahstract lengths
and angles: The length of |®,) measures the respon-
siveness of the system to a change in the associated ex-
tensive parameter X;, e.g., the extent to which the
system adjusts its value of R; in response to a small
change in X;. (For example, the length of the temper-
ature vector is related to the inverse heat capacity of
the system, and that of the pressure vector to its in-
verse compressibility.) The angle 6, ; between vectors
I®;) and |®,), on the other hand, measures the extent
to which different responses are coupled, e.g., to what
extent a small change in X; will produce a response in
R;, and vice versa. (For example, the angle between
the temperature and pressure vectors is related to the
thermal expansion coeifficient.) These metric param-
eters of M, , unlike those of a phase space, therefore
have an intrinsic thermodynamic significance, since
they are uniquely associated with measured physical
properties of the particular system under discussion,
Note that lengths in 9, depend on the physical units in
which the associated responses are measured, but the
“coupling” angles 6,, do not.

It was noted in Paper II that the dimensionality of the
subspace spanned by a chosen set of z vectors |®,) is
given by the rank of the associated Gram (or metric)
matrix 6, whose elements are scalar products among
the I®;). Any Gram matrix G “*!’ of »+ 1 vectors is
therefore singular in this »-dimensional space, and the
corresponding Gramian G+ accordingly vanishes,

GV _det| 61| =0, (2.12)
Equation (2, 12), which expresses the geometrical neces-
sity of linear dependence among any #+ 1 vectors in an
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r-dimensional space, was recognized in Paper Il as a
generalized form of the Gibbs—Duhem equation, to which
it directly reduces when the potential U scales in the
usual manner with the extensities X;.

When » reference fields R, (with associated reference
extensities X;) have been selected which lead to a linear-
ly independent set of field vectors |®;), the resulting
Gram matrix 6"’ is nonsingular, and will be simply
denoted as 6:1°

(G)ij = <(Bi 'aj) = (BR;‘/BX])X; i’j: 1! 2) veey ¥ (2. 133)
rank(G) = 7, (2. 13b)
G=det|G|#0. (2. 13¢c)

The reference vectors |®;) span the »-dimensional
space, and thus form a basis in M,. A general element
of this space, denoted |®,), can then be represented in
the form

l‘%)z ;ai ’(ﬂﬁ,

with “components” @; which provide the unique label @
for the element in the set of (generally nonorthogonal)
basis vectors |R,),

a; ={8Ry/8R;)n. {2.15)

A general scalar product of vectors |®,), [®4) then be-
comes, in view of (2.13a) and (2. 14),

<(Rtl I(RB> =dtGﬂ,

where superscript £ denotes the transpose, Thus, knowl-
edge of the Gram matrix G for the reference fields

I®,) is sufficient to determine all possible scalar prod-
ucts in M,, and thereby to specify the thermodynamic
geometry completely,

(2.14)

(2. 16)

The Gram matrix is symmetric through property
(2. 52),

G -6, (2.17)

which natural symmetry can be recognized as summariz-
ing the various Maxwell relations. Because of this sym-
metry, one can also see that no more than »{r+1)/2
elements of G are independent, This in turn establishes
that no more than #(»+ 1) /2 independent response func-
tions need be experimentally measured in order to char-
acterize completely the thermodynamic geometry of

the system. While such results can also be inferred
from the classical formalism, *! they have a particularly
transparent basis in the metric space ,.

Ill. CONJUGATE VARIABLES AND CONJUGATE
VECTORS

Although the reference axes [®,) are in general non-
orthogonal, one can easily construct an associated set
of “conjugate” vectors {®,;) which are biorthogonal to
the [R,),

(&, I(Rj)=6ij- (3.1)

Such vectors can be found whenever G is nonsingular,
and take the explicit form

|§‘>=;(G-l)“|aj>’ i=1,2,...,1’. (3.2)
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The conjugate vector l&,-) can be associated in the usual
way, Eq. (2.4), with a corresponding thermodynamic
variable E,;; when this is done, the variable R; will in~
deed be found to he “conjugate” to R; in the sense of Eq.
(2.3), viz.,

R, =(3U/3R;&. (3.3)

The variables R; thus behave, in a differential sense,
precisely as do the reference extensities X;, '2

dl-?,=dXi, i:1,2,...,7’ (3.4)

so that the symbols X; and R; are essentially interchange-~
able in any expressions involving changes of the exten-
sive parameter, The conjugate vector I(T%,) can there-
fore be thought of {(and accordingly labeled) as corre-
sponding tothe extensive variable X;,

dx, « %= (R, i=1,2,...,7 (3.5)

in much the same manner as |®,;) is related to the cor-
responding field variable R; in (2.4).

The biorthogonality relations (3.1) make clear the far-
reaching symmetry between field vectors |®;) and their
conjugates !®,) in the geometric formalism, The for-
mal symmetry is also seen in relations of the form

|§i>: '(Ri>) (3'6)

which exhibits the mufual character of vector conjugacy.
A general scalar product of two conjugate vectors bhe-
comes!?

®;|®)=(6X,/°R,)g, (3.7)
paralleling (2.7). In the conjugate basis of |®;)’s, the
roles of the conjugate variables X; and R; are evidently
reversed, and one deals with response functions in
which the fields R; (rather than extensities X;) play the
role of independent variables.

Scalar products among conjugate vectors can also be
evaluated from Eqgs, (2,13a) and (3. 2) in the form

®,|®)=(6166™);;=(67),,. (3.8)
Taken together, Eqs. (3.7) and (3.8) lead to various
thermodynamic identities connecting measured response
functions, (A new set of simple, systematic procedures
for deriving such thermodynamic identities by elemen-~
tary geometric means will be given in the following pa-
per (Paper 1V.!%), Equation (3.8) shows that the inverse
matrix 6~! plays a role for conjugate vectors l&,) which
is analogous to that played by G itself for the field vec-
tors [®;). For future reference, and in anticipation of
Sec. IV, we may define the conjugate matrix G,

E: G-l - (G-l)t ,

so that (3. 8) becomes the obvious “conjugate” of Eq.
(2.13a),

(©),=(@&, |&) = (0X,/0R ), 4,i=1,2,...,7.

Although 9, was initially constructed from field vari-
ables R,, introduction of the conjugate vectors |®;)= |%;)
finally permits fields and conjugate extensities to be
handled in a nearly symmetrical fashion in the geomet-
ric formalism. Nevertheless, a fundamental asymme-
try persists in the formalism between these two types
of variables.'® For example, if X,,, is a scale factor

(3.9)

(3.10)
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and R,,, its conjugate field, it will be possible to find a
vector [®,,,) representing R,,, in M, (its expansion is
given by the Gibbs—-Duhem equation?), but there is ob-
viously no corresponding vector representing X, ,, since
the inverse matrix which would be required in Eq, (3.2)
for its construction does not exist, as shown by Eq.
(2.12),

Example: Homogeneous Fluid

To give some of these ideas more concrete form, let
us consider the elementary example of a homogeneous,
one-component fluid system of fixed mass, In this case
both ¢ and v are unity,

(3.11)

so the absfract space is two-dimensional. The infernal

energy U is a function of entropy S and volume V,
U=U(S, V), (3.12)

characterizing, respectively, the thermal and mechani-
cal properties of the system, The associated conjugate
fields are the absolute temperature 7 and negative pres-
sure - P,

Each of the fields and extensities is associated with a
vector in M,, as in (2,4) and (3. 5),

T |T), Pole),

Se |8y, Velo. (3.14)

Scalar products among these vectors are readily found
from Eqs. (2.13a), (3.1), and (3. 10), and are tabulated
in Table I, The entries of Table I are written in terms
of commonly measured properties, such as the heat
capacities Cp and Cy,

as aS
i Co=Tl—
CP T(8T>P’ 14 T(8T>V!
the (isothermal and adiabatic) compressibilities g and

ﬁS’

r=Cc—-v+2=2,

(3.13)

(3.15)

1/3V 1/8V ‘
== (5 A 3.16
Br V(ap),, Bs V(BP)S’ 3.16)
the thevmal expansion coefficient op,
1{8V
ap :‘—’<3T>p’ (3.17)

and the heat of pressuve vaviation (at constant volume)
rV’
I, = T(388/8 P)y. (3.18)

As pointed out below Eq. (2.17), only 2(2+1)/2=3 of
the above properties could be independent. Particular
numerical values assumed by three such properties in
the state of interest must be provited by experimental
measurements (or by some microscopic model), and
will serve to identify the particular substance under con-
sideration.

From Eq. (2.8) and Table 1, the lengths of the various
vectors are seen to be

l7|=(T/C)V2, |@|=(vEs) "2,
Is|=(Ca/T2, |U|=(VBp)2.

(3. 19
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TABLE I. “Standard” scalar products.

) | =) Is) |v)
|7y T/Cy -T/Ty 1 0
| —®) ~T/Ty 1/VBs 0 1
[s) 1 0 Cp/T Vap
| ) 0 1 Vag VBr

Similarly, Eq. (2.9) gives the angles separating the
thermodynamic vectors; two such characteristic angles
are 05y, se.arating 18) and V),

cosfsy = ap(TV/Cp Br)', (3. 20)
and ¢, separating I8) and |7),
cosbgp = (Cp/Cp)V2, (3.21)

For example, Eq. (3.21) shows that the conjugate en-
tropy and temperature vectors are separated by an angle
of about 39° for a monatomic ideal gas (for which CV/CP
=3/5),

9;1;021) - COS-1(3/5)1/2 ’:39. 20. (3. 22)

Since 18) is orthogonal to |-@®), and [T) is orthogonal
to 1V by Eq. (3.1), it is easy to recognize geometrical-
ly that the conjugate vectors |-@®), [v) must be sepa-
rated by the same angle as were [8) and |7), or by its
supplementary angle,

cos?0_p,y = cos?0gy, (3.23)
which is the identity
Cp/Cy=Br/Bs. (3.24)

Other familiar identities connecting the properties
(3.15)-(3. 18) can be read off similarly from the elemen-
tary geometry of these vectors.

Finally, we can use Eq. (3.8) to obtain a group of
such identities simultaneously. From Tabhle I, the Gram
matrix G and its inverse are:

(rley  (7]-®) T/C, -T/Ty
, (3.25a)

(-e|lry (~el-0)) \-T/T% 1/V5
oo (818 (sl (/T vy (3. 25b)

(v]s) (vlvy) \vae, VB

If we invert the 2x 2 matrix of Eq. (3. 25b),

Ve - Vap
(G)1=-6=G ,

(3. 26)
-Vop Co/T

and compare element-by-element with Eq. (3.25a), we
read off the equations

_T/Cy _T/Ty _1/VBs

G= =
Ve  Va, Cp/T’ (3.27)
from which follow the identities
CyBr=apTy=Cpfs = T/VG, (3. 28)

where G=det] Gl is the Gramian, Generally speaking,
it is clear that the three independent equations in (3. 28)
would be sufficient to express any of the six properties
Cp, Cy, Br, Bs, @p, T'y in terms of any chosen set of

three independent responses, as we were led to expect
from the “+{r+1)/2 rule.”

IV. GENERAL TRANSFORMATION THEORY I[N I%,

While the discussion has thus far been largely confined
to a specific set of reference fields and extensities,
equations such as (2. 14) make clear the possibility of
treating more general types of thermodynamic variations.
Transformations among thermodynamic variables will
correspond to ordinary vector transformations in Euclid-
ean space, and are therefore treated simply and sys-
tematically in the geometric formalism,

An application of Eq. (2.14) has already been seen in
Eq. (3.2), where a specified linear combination of field
variations was found to be associated with variations of
an extensive coordinate, Such linear combinations of
field variables would also be necessary to represent
variations along a coexistence curve, or, indeed, along
any path in phase space which is not parallel to one of
the axes. An additional incentive to incorporate these
more general variations is based on purely experimental
considerations; as remarked in Paper I, the variables
which are practically under an experimenter’s control
may involve simultaneous changes of two or more “refer-
ence” variables, and would thus require representation
in the more general form of Eq. (2.14). It is therefore
desirable that general expressions he available which
allow easy transformation from one “coordinate system”
to another,

To develop such transformation properties of M,, we
now consider the simultaneous transformations of the
reference fields R; which are generated hy some arbi-
trary (but nonsingular) real » X # matrix A,

G G12°°° Gy,

Ay Opp° " Gor

A= (det|al#0), (4.1)
Ay Gyt ° Oy
whose ith row will he denoted a,,
(A){j=(a{)j- (4. 2)

The transformed field variables generated by this ma-
trix are denoted R,, [cf. Eq. (2.14)], and take the form
Rg‘-:X(ai)jRj, 7:=1,2,...,’V. (4.3)

The reference fields R; and transformed fields R,, may
be gathered into column vectors R and R,, respectively,

R, R,,
R, R,,

R= , R,= , (4.4)
R, R,

in such a manner that the overall transformation takes
the form

R,=AR, (4.5)
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In this notation, for example, Egs. (3.2) become [using
Eq. (3.9)]

R-6GR, (4.6a)
that is,
R-R;, (4. 6v)

where R is a column vector of the conjugate variables
R

i

o)
1l

4.7

Given a set R, of transformed field variables, we
should naturally seeli expressions for the corresponding
conjugate variables R, , which satisfy

1144 .
Ry, = (SR.);‘A’ i=1,2,...,7.

The considerations which led to Eqs. (3.2) and (4.6) now
give

ﬁA = EA RA’

(4.8)

(4.9)

where R, is the column vector of the R, ’s and G, is
the Gram matrix for the transformed field variables,

(GA)u:(ma,l‘R;j), i,7=1,2,...,7. (4. 10)

Equation (2, 16) shows that this transformed Gram matrix
is simply

G,=AGA. (4.11)

If we now introduce the comjugate (inverse transpose)
matrix A [cf. Eq. (13) of Paper 1],

A=(AY) - (A (4.12)

and employ Eq, (4.6a), we obtain Eq, (4.9) in the form
R,-=AR, (4.13)

which is apparently the “conjugate” of Eq. (4.5). The
conjugacy relation (4, 12) for matrices is readily seen to
have the properties [cf. Eq. (3.6)]

(4.14)

(AB)=AB, (4.15)

Property (4. 15) then permits one to easily rewrite equa-
tions in their “conjugate” form; for example, Eq. (4.11)
becomes
G,-AGA’, (4.16)
and so forth, For completeness, we remark finally that
scalar products among the transformed variables become
completely analogous to the corresponding Eqgs, (2.13a),
(3.1), and (3.7) when expressed in terms of the ordinary
differential formalism, viz.,
8 a

R
<@3i }&‘) = (ﬁj)iA = (GA)H; {4.172)

F. Weinhold: Metric geometry of equilibrium thermodynamics. 111

- = oR, —
@Ry, ‘(R'j> = (gfg—::)n“ =Gy, (4. 17v)
<(§‘i “Rl):ai!- (4.17¢)

Example: Saturation Properties

We shall again illustrate these general ideas with the
help of a specific example, Suppose that in place of the
standard properties Cp and ap (P= constant) we now wish
to consider the analogous saturation properties C, and
o, (see, e.g., Rowlinson'®),

) _1(ov
cu - T (8T>ur ao_ V(ST)O,

for a saturated fluid along its vapor-pressure curve
(o =constant), To deal with such properties, we shall
wish to transform from the old reference fields

(4. 18)

R T
1 _ (4, 192)
R, -P
to a new set
R} T
e , (4. 19b)
R; o

in which the “coexistence coordinate” o is itself a vari-
able. If A is the transformation from old fields to new,

R! R,
Ry R,

(4. 20)

then the new Gram matrix 6’ is obtained from the old

by Eq. (4.11),
G =AGA'. (4, 21)

Suppose ¥, represents the slope of the coexistence
curve in a conventional PT plot, so that, by definition,

(8P/8T),=7,. (4.22)

The coexistence coordinate o is therefore composed from
the old fields T and — P hy the equation'’!®

loY =9, | 7Y+ |- @), (4.23)
and the transformation matrix A is therefore
1 0
A= , (4. 24a)
Yo 1 .
with conjugate
1 -
A- 7, (4. 24b)
01

The extensities X and X, conjugate to R; and R, are
accordingly, by Eq. (4.13),

!

= X’t -A X =
X, X, 14

(4. 25)

3

Of course, 7, is merely a numerical constant for the
particular thermodynamic state under consideration.

Since the properties (4, 18) of interest require deriva-
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tives with respect to fields 7' and o, we shall look for the
inverse Gram matrix (6')"'1=8’, according to Eq.

(4. 17b):
_2X>
>
8R2 8R;

% Vy, 0y Va, ’
= . (4. 26)
-1 :
Vo, (80- >T
! can also be written from Eq. (4.21) as

Cp/T Vap 1 0
1 Vap  Var -y, 1

1)

S oy ap+ V2B Vap - Vyehy
= T . (4.27)

Vap - Vvefr VBr

Element-by-element comparison of Eqs. (4.26)and (4. 27)
then gives the desired identities,

@, = Op - ':Vaﬁr’ (4. 283)
Ca = CP - TV‘)/,,Clp, (4. 28b)
(8V/80)y = VByp. (4. 28¢)

Equation (4. 28a) and (4, 28b) are, of course, well known,®

but their derivation here illustrates rather general and

systematic algebhraic procedures which may be expected
to retain their effectiveness when more traditional ma-

nipulations would he excessively cumbersome.

V. NORMAL FIELDS

Since the field vectors |®,,) are in general neither
orthogonal nor normalized, it is of interest to identify
that particular choice of A for which these vectors he-
come an orthonormal set, Such orthonormal field vec-
tors will be called the normal fields'® and denoted |§,),
with associated normal field variable E;. The desired
transformation therefore takes the form

|g{>=j:‘( @), R, i=1,2,...,7 (5.1)
where, by definition,
(8,18, =5,,. (5.2)

We note first that the matrix A leading to normal
fields (5. 1) is not uniquely defined, for if O is any o»-
thogonal matrix, satisfying

o'=07, (5.3)
then the substitution
A—-OA (5.4)

in Eq. (5.1) leaves the orthonormality property (5. 2)

unaffected. When Eqs. (5. 1) are inverted for the refer-
ence fields |R;),
r
@) =2 (A1,16, i=1,2,...,7 (5.5)
i=
it is apparent that substitution (5. 4) cannot affect any
scalar products (®, 1®,) (which are the only observables
in this formalism), and hence should not be ascribed any
physical significance. The orthogonal matrix O can
therefore he chosen for convenience (e.g., to simplify
A) without essential loss of generality; it merely reflects
the usual freedom to arbitrarily rotate Cartesian axes
in an ordinary Euclidean space.

The defining property (5. 2) establishes, in conjunction
with Eq. (3.1), that the normal fields are self-conjugate,

|g£> = |_gi> (5. 62)
E;=(3U/3E)g, i=1,2,...,r (5. 6h)

that is, they represent th_e particular choice of variables
{RH} for which R, and R, coincide for each i,

R,-R,. (5.7)

Equation (4. 9) shows that the desired matrix A must
therefore satisfy

6.1, (5.8)
or, from Eq. (4. 16),
AAa=c, (5.9)

where again the invariance to substitution (5. 4) is mani-
fest,

Let us now introduce the orthogonal matrix Q, with
rows q;,

@y, =(,), (@=qQ, (5. 10)

which transforms the (real symmetric) Gram matrix G
to its diagonal matrix of eigenvalues k,

QGQ’ =k, (5.11a)

K)y; =104y, i,7=1,2,...,7. (5. 11h)
It follows from Eqs. (5.11) that

6= (@'kQ)" = (k72Q) (kV/2Q), (5. 12)
where the (diagonal) square root matrix k™2 is

(k™V2),, = k71725, (5. 13)

and where (say) the positive square root of each real
positive k; is to be taken, Equations (5, 9) and (5. 12)
evidently have the solution

A=x"1%q, (5. 14)

which is unique up to the arbitrary orthogonal transfor-
mation discussed in (5.4). In terms of the eigenvalues
k; and eigenvectors q,; of the Gram matrix G,

Ga;=x0qy, i=1,2,...,7 (5. 15)
the normal field vectors are therefore
r
’é”>=; kY2 (), ®), i=1,2,...,r (5. 16)

Each reference field |®,) can in turn be expanded in
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terms of the normal fields 1§,) to give

&, = .}: K2 (g, 18, (5. 172)

|m,>=;:x;“2(q,),.lgj>, i=1,2,...,7. (5. 17h)

Equations (5. 17) provide useful starting points for ob-
taining explicit representations of the abstract |®;) and
I®,;) as ordinary column vectors. It will often be con-
venient, for example, to represent the normal fields
18,) as the unit column vectors,

) 0 /0
0 1 0

8p=1 . | I[82= s len=l )
0 0 1

(5.18)

so that each |®;) and !@i) takes on a corresponding rep-
resentation whose vector elements depend explicitly on
k,’s and q,’s in a prescribed manner,

VI. STABILITY CONDITIONS

The second law of thermodynamics is known to imply
certain rigorous inequalities among thermodynamic prop-
erties, such as

CP ZCV,
Cofr =TV},

(6.1)
(6.2)

etc. Such stability conditions serve to ensure the max-
imization of entropy at constant energy (or minimization
of energy at constant entropy) which is embodied in the
second law. It is well know, for example, that the theo-
retical “van der Waals gas” cannot everywhere satisfy
such stability conditions, and to this extent is incompati-
ble with hasic laws of thermodynamics, Inequalities
such as (6. 1) and (6. 2) can thus serve as a useful check
on microscopic models of fluids, on proposed functional
forms for equations of state, or on the experimental data
themselves for consistency with hroad thermodynamic
principles, The magnetic analog of inequality (6. 2), for
example, has played an important role (expressed in the
form of “Rushhrooke’s inequality” for critical expo-
nents?%) in recent theoretical and experimental studies
on critical phenomena, 2!

In the geometric representation, where laws of ther-
modynamics appear only as “rules of geometry,” all
such stability conditions arise merely as instances of
the Schwarz inequality in the vector space M,.

®; R =(®, |R ) (& |®)).

The Schwarz inequality (6. 3a) can equivalently be ex-
pressed as the condition

(Ba|®Re)z0, alla

or again as the elementary geometric proposition

(6. 3a)

(6. 3b)
~1=cosf;; =1 (cosd;;=1), (6. 3c)
in terms of the “angles” §;, defined in Eq. (2.9).

For example, when inequality (6. 3c) is applied to the

Metric geometry of equilibrium thermodynamics. |1}

angle 05, between the entropy and temperature vectors
[cf. Eq. (3.21)],

~1=cosbgp = (Cp/Cp)P=1, (6.4)

one ohtains directly the stability condition (6.1). Simi-
larly, application of (6. 3c) to the angle 65, of Eq. (3.20)
leads directly to inequality (8.2). If we apply (6. 3b) suc-
cessively to the vectors 17), |®), [8), and IU), the re-
sults are (since 7'>0, V>0)

{6.5)

which are again well known consequences of the second
law, Stability conditions which are not so well known
can be obtained by easy analogy, For example, if we
consider the angle between the vectors 17 ) and [¢) of
Eq. (4.25), the result is

Co = TValy, +a, /Br),

and so forth,

Cy=0, f5 =0, Cp=0, B =0,

(6.6)

Of course, no more than a few of the stability condi-
tions given above are independent, since in principle one
could use identities like Egs. (3.28) or (4. 28) to deduce
some of these inequalities in terms of others. It is easy
to recognize from the form (8, 3b) that exactly » such
inequalities will suffice in general, since (6. 3h) is the
condition [cf, Eq. (2.16)] that the matrix G he positive
semidefinite, 2

a‘Ga=0, ala (6.7a)
which in turn is equivalent to the non-negativity of its
r eigenvalues k;,

K120, K,=0, ..., & =0, {6.7b)
Of course, the v inequalities (6.7b) are only one of many
possihle minimal sets one might choose to express over-
all stability; for this reason, one may prefer to regard
the Schwarz inequality itself, e.g., inequality (6. 3¢), as
the more general and transparent expression of the con-
straints imposed hy thermodynamic stability,

VIl. CONCLUSION

The general outlines of an alternative representation
of equilibrium thermodynamics have been sketched and
illustrated in a simplified manner. In the present work
we have sought principally to show how krown thermo-
dynamic identities, stahility conditions, and other rela~
tionships arise in a unified way from the elementary
geometry of the thermodynamic vectors, but the possi-
bility for significant extension of the classical formal-
ism appears at several junctures [as in the use of nor-
mal field variables, or in the geometric evaluation of
general response functions, as described in the following
paper (Paper IV)]. In respect to the convenience of its
underlying vector-algebraic methods, the new repre-
sentation appears to compare favorably with the tradi-
tional formalism of partial differential equations, The
algebraic techniques of the present approach, for exam-
ple, seem particularly susceptiblie to systematic appli-~
cation in complex multicomponent chemical systems,
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where portions of the traditional formalism become ex-
ceedingly cumbersome.
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