Metric geometry of equilibrium thermodynamics. Il. Scaling,
homogeneity, and generalized Gibbs-Duhem relations

F. Weinhold

Department of Chemistry, Stanford University, Stanford, California 94305

(Received 26 August 1974)

It is shown that the classical Gibbs~Duhem relation can be regarded, in the abstract metric
framework proposed recently, as expressing the obvious geometric impossibility of finding r + 1
linearly independent vectors in an r-dimensional space. Certain connections between generalized
Gibbs-Duhem relations and permissible scaling hypotheses for thermodynamic potentials are noted.

. INTRODUCTION

In the preceding paper, ! to be referred to as I, it was
observed that the formalism of equilibrium thermody-
namics exhibits a certain underlying geometric struc-
ture, It was shown that characteristic thermodynamic
principles—empirical “laws” of universal experience—-
could be brought into correspondence with mathematical
axioms of an abstract metric space. As a result, the
thermodynamics of a given equilibrium state came to be
formally associated with the geometry of an abstract
Euclidean vector space. The present paper addresses
certain additional features which such an abstract vector
geometry must exhibit as a consequence of phase homo-
geneity, scale invariance, the extensive character of
certain thermodynamic variables, and related aspects
of a thermodynamic description.

Let us first recall that the construction of a thermo-
dynamic metric space i, of dimension » was carried
out in Paper I on the basis of the following few thermo-
dynamic principles:

(i) The Gibbs phase rule, e.g., the observation that
equilibrium states are describable in terms of some
small determinate number » of independent state vari-
ables.

(ii) The role of potentials, e.g., the observation that
an equilibrium state can be mathematically character-
ized in terms of low-order derivatives of a thermody-
namic potential (“fundamental equation”) U.

(iii) The first law, e.g., the observation that the po-
tential U/ has an exact differential.

(iv) The second law, e.g., the observation that the
potential U7 achieves an extremal value at equilibrium.

In a rough sense, it may be said that observation (i)
led to the dimensionality of the proposed metric space
9M,, while (ii), (iii), and (iv) led, respectively, to the
distributive, symmetric, and positive character of the
proposed scalar product in M ,. Clear distinction was
drawn between the “extensities” X;, which served as
arguments of the potential U,

U= U(Xl: D COI R r+1); (1)
and the conjugate “field”? variables,
R;=8U/8X;, (2)

whose first differentials came to be associated with
elements |®;) of the abstract vector space,
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dR; = I®;) €M, (3)

However, no direct account was taken of the extensive
character of the X; and of I/ (which will again be identi-
fied as internal energy), nor of the scale invariance®
and phase homogeneity which is observed (or assumed)
to characterize macroscopic thermodynamic systems.*

In the classical treatments of thermodynamics, the
extensive character of energy U, entropy S, volume V,
mole numbers N;, etc., is usually acknowledged at the
outset. Thus, contributions to each X; from various
portions of the system are assumed to be simply addi-
tive, and total X; is taken to be directly proportional to
the overall scale of the system, i.e., to total mass or
volume. These assumptions are usually expressed in
terms of the first-order homogeneity of the energy func-
tion,

U(AXU )‘Xzy % )\Xr-vl) = AU(XU Xz’ frcy Xru)’ (4)

or the zero-order homogeneity of the field functions,
R,‘(AX[, X){2 PR AXNI) = Ri(Xl ) Xz ) Xﬂl)’ (5)

for all A>0. Such equations lead in a familiar fashion,?
through application of Euler’s theorem on homogeneous
forms, to the Gibbs—Duhem equation,

7+l

1
OZZ X{dRi ZZ EidRi, (6)
i=1 i=1

which plays a key role in the Gibbsian analysis. (As in
Paper I, £; will be used to represent the numerical
value assumed by the variable X; in the state in question,
and we shall again speak of the “point” ¢ which labels
this state, etc.) Homogeneity and additivity assumptions
of the form (4) or (5) are thus deeply embedded in the
classical formalism, though in real systems their valid-
ity might certainly be questioned, for example, in the
limit of very small scale.b

In an abstract geometric representation, on the other
hand, homogeneity assumptions play only a secondary
role, but equations related to the Gibbs—Duhem equation
(6) arise quite naturally and directly, as we shall sub-
sequently describe. It will be shown that the metric
framework permits one to significantly weaken assump-~
tions (4) or (5) without significantly altering the basic
formal structure. Certain general connections between
the dimensional requirements of a metric space and
possible scaling assumptions on a thermodynamic po-
tential can thereby be clarified.
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1. DIMENSIONALITY, LINEAR DEPENDENCE, AND
GENERALIZED GIBBS-DUHEM RELATIONS

In the geometric representation, an equilibrium sys-
tem consisting of ¢ independent chemical components
and v phases is associated with an abstract geometric
“image” in a metric space M, of dimension 7,

y=c—-v+2. )]

Scalar products among the vector elements |®,) of this
space are evaluated in terms of thermodynamic “re-
sponse functions, ” ”

®;|®)=8R,/0X; , (8)

for the equilibrium state in question. While the vectors
arise through the associations (3) and (8) in a some-
what abstract manner, they are isomorphic to vectors
of an ordinary Euclidean space,® and thus exhibit certain
elementary properties which are characteristic of such
spaces, and which we now briefly recall.®

If some collection of n such Euclidean vectors is
chosen, the dimensionality of the manifold spanned by
these vectors can be determined from the rank of the
associated Gram matrix 6 '™,

dim{|®), i=1, 2, -.., n} =rank(G6"), 9)
whose elements are scalar products among the |R,),

G™);=@|®), 4,5=1,2, o, n (10)
The associated Gramian determinant G,

ek =det|G("’f, (11)

measures the (squared) volume of the parallelepiped
generated by the |®;), and is thus a measure of their
degree of linear dependence or independence. Thus, the
Gramian vanishes,

G(n) :0, (12)

if and only if the number » of vectors exceeds the dimen-
sion of the manifold,

n >rank(G (")), (13)

and it is therefore possible to find coefficients 7;, not
all zero, such that

" :
Z niI(Ri>:0' (14)
i=1

If Eq. (14) is multiplied successively by ®,l, j

=1, 2, ..., n, one obtains a set of linear equations which

can be written in matrix form as

G (")n:O, (15)

so that the vector 5 ={n,;} of coefficients in (14) is seen
to form a null eigenvector of the singular matrix G .
The intrinsic dimensionality » of the full space I, fur-
thermore imposes the condition

rank (6™) = = dim (91,) (16)

for every n. If n>r, G'® must therefore have at least
7 ~ 7 vanishing eigenvalues and corresponding null eigen-
vectors satisfying (15).

In the thermodynamic context, elements of I, arise
[through the association (3)] as partial derivatives of the
potential U of Eq. (1). Although the # field vectors
I®,) (temperature, pressure, etc.) arising from a
“scaled” U (e.g., with constant scale factor X,.,,) may
be considered sufficient to span the space 91,, one can
introduce as well the additional field variable R,., (a
chemical potential, if X,,, is a mass variable),

Rﬂ-l = 3U/3X,.+1 ’ (17)

and corresponding field vector |®,,;) in a completely
analogous manner. The corresponding Gram matrix
G "' associated with the manifold of »+1 field vectors,

(G(ru))“:((ﬂi’(plj)’ B §=1,2, coe, v+1, (18)

must however satisfy condition (16),

rank (G "*P) =4 (19)
so that necessarily

c"Y = det ;G(r'&l) I =0, (20)

6™V q=0, (1)

1

>mlar=o, 22)

i=1

in view of (12)-(15). Equations (20)-(22) are essentially
equivalent statements expressing the obvious impossi-
bility of having »+1 linearly independent vectors in an
v-dimensional space.

The vanishing of the Gram determinant 6"*¥, Eq.
(20), may be regarded as a generalized Gibbs—Duhem
velation. The equivalent equation (22) could be imme-
diately recognized as the ordinary Gibbs—Duhem equa-
tion {6) if one recalls the association (3) and sets

mi=§;, i=1, 2: cer, 1L (23)

We can therefore anticipate that the special identifica-
tion (23) will follow when we introduce the specific ho-
mogeneity assumption (4) or (5) into the metric formal-
ism, as the Gibbs—Duhem equation itself follows from
such an assumption in the usual formalism. But an
equation having the general form of the Gibbs—Duhem
equation must hold more generally, since it is a simple
consequence of dimensional considerations in the metric
framework,

i1l. GIBBS-DUHEM EQUATION

To obtain the Gibbs—Duhem equation in its usual form,
e.g.,

r+l

Z 5;"@:'):0, (24)
=1

we should evaluate the additional elements of the aug-
mented Gram matrix 6 "7,

(G0 )i R ®; l ®Rrap)

SR .
G i=1,2, ..o, 7il,
80X/ x eex,
(25)
on the basis of the supposed homogeneity relations (4)
or (5). If we set
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A= Xm'l , (26a) Now Eq. (36) is apparently the chain rule for a func-
tion having the s i =
Y, oAK,, i1, 2, eee, ¥ (26b) g the special property (for c; =constant)
Eq. (5) says that Ri(Xy, Xpy ooy Xp)=Ri(Yy, Yoy ..., ¥y ) at(gg)
Ri{Xy, Xpy -y X)) =Ri(Yy, Vpy vve, Y,, 1), 27 in some asymptotic sense about point £. The functions
and hence, by the chain rule, fi which lead to (37) and (38) must satisfy
) 1nY,-> dlnf;, -n;
. L/ Bt 39
aaRi ZZ;_;:_, i{Yj . 28) (BlnX“.] xpeeex, AINX, g 7,y (39)
+ j 9 T+
X 7Y ! and therefore have the form
Noting that fi= ch;:{/"f+1, c¢; =constant, (40)
<8Yj ) ==Y, /X, (29a) Equation (38) can therefore be written as
39X, .,
Tl X Xr Ri(Xlr XZ; ceey Xn-l):Ri()‘"le’ AanZ; cee 7\"7‘*er+1);
R, . OR, (41)
Yisy, =% ETXf (29b) provided we define
for eachj=1,2, ..., », we can put Eq. (28) in the form Ard=eo/Xpn, (42a)
r ni/n,
. C;=Cof/ el
<(Ri ’ (Rr+1> == Xr+1 ! Z XJ’ <(R1 I(RJ> ! ° (42b)

F=1

.
==t D (G™Y) ik, =1, 2,00, r4l
=1

(30)
which is merely a way of rewriting the matrix equation
G V=, (31)

Equation (31), when compared with (21), verifies that
the Gibbs—Duhem relation, (23) or (24), is the explicit
form taken by the general equations (20)-(22) when the
potential U and fields R; scale in the simple manner of
(4) and (5).

IV. GENERALIZED HOMOGENEITY CONDITIONS

Let us return to the general equations (20)-(22) in the
absence of any specific scaling assumptions. If we de-
fine the ratios n;, i=1, 2,..., r+1, such that

ny=m/X;=n;/¥ at E, (32)

then Eq. (21) can be rewritten in the form

z n, X;\o
8R; _ (__L__I_>_§L at g, (33)
a‘er j=1 Rpsr X'r+1 aXJ

so long as n,,, #0. If now Y, are » new variables,
YJ :fj(‘xﬂ-l)xj’ j:]‘, 29'0-; v (34)

related to the old X; by some (as yet unspecified) function
fi=t; (X,,,) of the proposed scale factor, then, for each
i=1,2,..., 7,

X, (?ﬁ) -y, (%i) ,
Xj Xl“'xj-lxjﬂ"‘xr-l-l ] Yl"'Yj-irjﬂ"'Y"
(35)
and Eq. (33) can be rewritten as
r r
OR; _ <__".1__ZI_)%L= 2, B8R ., £, (36)
8Xp1 Go \ Ppay Xpn/ 3Y; G 0X,,, 8Y
provided that ¥, has been chosen to satisfy
8Y; > nj_ Y; ,
—— T =1,2 veey Ve 37)
(aan Xper X, Nyir Xr+1 ! i (

Functions having the property (41) are called generalized
homogeneous functions(of “scale-invariant” type),
These represent a considerably broader class than do
the ordinary homogeneous functions, to which they re-
duce in the special case

By=Ng=osos =Ny, =1, (43)

Of course, in this same case the starting equation (21)
becomes equivalent to the ordinary Gibbs—Duhem equa-
tion (24).

Thus, equations of the form (20)-(22), which arise
from elementary dimensional considerations, can be
recast into forms which correspond to (e.g., appear to
result from) thermodynamic potentials which are gener-
alized homogeneous functions, or behave asymptotically
as such in the neighborhood of the given equilibrium
state, Generalized Gibbs—Duhem relations, or linear
dependence conditions, might therefore be associated
with more general scaling assumptions than the ordinary
homogeneity condition (4) or (5). !* However, it seems
a significant advantage of the metric formalism that
Gibbs—Duhem-like relations, expressing the interdepen-
dence of thermodynamic field variables, arise without
reference to any specific scaling assumptions on the
thermodynamic potential,

V. CONCLUSION

The foregoing analysis has suggested a generalized
form of Gibbs-Duhem relation which can be regarded
as expressing, from the abstract geometric point of
view, the obvious impossibility of finding 7+ 1 linearly
independent vectors in an r-dimensional space. The
precise form taken by such relations depends on the
scaling behavior which is observed (or assumed) to
characterize the thermodynamic potential U in the neigh-
borhood of the given equilibrium state. If U scales in
the usual manner as an ordinary homogeneous function,
the linear dependence condition becomes the Gibbs-
Duhem equation in its usual form. Moreover, the as-
sumption that the Gibbs—Duhem relation takes its ordi-
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nary form implies that U could not scale except in the
ordinary way. However, the generalized Gibbs-Duhem
relation, or linear dependence condition, was shown in
the absence of any subsidiary assumptions to correspond
to a form of generalized homogeneous behavior of the
thermodynamic potential, The foregoing treatment
therefore points to a close connection between simple
geometric considerations of dimensionality, on the one
hand, and possible scaling hypotheses12 for thermo-
dynamic potential functions, on the other,

The natural role played by Gibbs—Duhem relations
in the metric framework suggests that other features of
equilibrium thermodynamics might be perceived or ana-
lyzed as elementary geometric consequences of the
underlying metric structure. Additional implications
of this structure will be explored in forthcoming papers.
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