Metric geometry of equilibrium thermodynamics
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It is shown that the principal empirical laws of equilibrium thermodynamics can be brought into
correspondence with the mathematical axioms of an abstract metric space. This formal
correspondence permits one to associate with the thermodynamic formalism a geometrical aspect, with
intrinsic metric structure, which is distinct from that arising from graphical representations of

equilibrium surfaces in phase space.

I. INTRODUCTION

It has been known, particularly since the early works
of Gibbs, ! that the analysis of systems in thermodynam-
ic equilibrium can be considerably facilitated with the
help of graphical and geometrical methods. Gibbs
pointed out the advantage of geometrically representing
thermodynamic properties of simple fluids by means of
surfaces in “Gibbs space”?—rectangular coordinates
labeled by the internal energy, entropy, and volume of
the system. The geometrical analysis of equilibrium

surfaces in Gibbs space, or other related phase spaces, ‘

continues to play an important role in more modern as-
pects of thermodynamic research.’

While thermodynamic systems thus appear to have an
important geometric aspect, it has been generally rec-
ognized that the “geometry” of thermodynamic phase
spaces lacks an intrinsic metric structure.* This cir-
cumstance results essentially from the arbitrariness of
units which might be chosen for the various coordinate
axes, and from the rather arbitrary selection of the
Cartesian axes themselves from among a wide variety
of possible coordinate systems. For this reason, dis-
tances, angles, areas, “direction,” and other natural
geometrical concepts do not generally have an intrinsic
thermodynamic significance in such spaces.

In the present paper we wish to call attention to the
existence of another, quite different form of geometry
in the thermodynamic formalism. It will be found pos-
sible to construct, within the confines of this formalism
a linear vector space which, although of an abstract na-
ture, possesses a full metric structure and is therefore
isomorphic to an ordinary Euclidean space of corre-
sponding dimensionality. The abstract metric structure
derives rather directly from general thermodynamic
principles—empirical “laws” of universal experience—
which underlie the thermodynamic formalism. As such,
the metric geometry may offer the possibility of an al-
ternative representation of this formalism {or selected
aspects thereof) with certain novel features,

b

H. SYNOPSIS OF THE EMPIRICAL BASIS FOR
EQUILIBRIUM THERMODYNAMICS

In order to identify clearly the origins of the abstract
metric structure, we first briefly summarize the em-
pirical observations which underlie equilibrium thermo-
dynamics, so as to bring these observations into a con-
venient form for the later analysis,

A. Fundamental equation and laws of thermodynamics

Following generally the Callen®~Tisza® (“neo-Gibbs-
ian”") treatment, particularly in its emphasis on indi-
vidual thermodynamic states rather than processes as
primary elements of the formalism, ® we consider the
elementary thermodynamics of a simple system such as
a fluid in the absence of external fields, surface effects,
etc., though the treatment will not preclude certain
standard extensions to more complex systems. At the
outset, nonthermal concepts such as pressure, volume,
etc., are regarded as established, and we further as-
sume that such properties as temperature, internal en-
ergy, and entropy have been introduced in some orderly
manner? and are understood to have definite operational
significance.

It is observed that an equilibrium state can be com-
pletely characterized, for thermodynamic purposes, in
terms of only a small, determinate number r (fixed by
the Gibbs phase rule'?) of independent state properties.
Following Gibbs'! (in the “energy representation”?), we
are then led to associate with the system a fundamental
equation of the form

U=UWXy, Xzy.ovy Xp, Xpu1) s (la)

in which internal energy U is expressed as a function of
extensive state properties X;. Although these latter are
commonly chosen to be entropy S, volume V, mole num-
bers N;, etc., we can more generally regard each X, as
some arbitrary linear combination of the reference ex-
tensities S, V, Ny,...."" Since the overall scale of the
system is not ascribed thermodynamic significance, one
argument of the fundamental equation, say, X,,, (usual-
ly total mass or volume), is to be held fixed as the
“scale factor”** for the system, and can then be sup-
pressed from the argument list,

U=UX,, X5,..., X,). (1b)

The functional relationship which connects the indepen-
dent extensive variables in Eq. (1) is moreover observed
to be sufficiently well behaved to permit the application
of the partial differential calculus in the familiar man-
ner. Thus, with each extensity X; one can associate the
corresponding field™ variable R;,

R =8U/8X;, (2)

which is said to be conjugate to X;. The fields R, are
themselves observed to be differentiable functions of the
extensities, and the first law—the observation that in-
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ternal energy is a conserved function of state, and thus
has an exact differential—is usually expressed through
the cross-differentiation identity!®

OR;| _8R; (3)
8X,|, axX;l,

involving such field derivatives. The subscript vector
E denotes that the partial derivative is to be evaluated
at the point £ in Gibbs space, e.g., at the point where
each X, assumes the numerical value £; corresponding
to the particular equilibrium state in question.

Perhaps the most characteristic observation concern-~
ing equilibrium states is the extremum principle sum-
marized in the second law, the observation that energy
is minimized at constant entropy (or, equally, that en-
tropy is maximized at constant energy!'”) in an isolated
equilibrium state. This observation can be expressed
through a convexity relation of the form!®

Ux)=3Ulx; +8x,)+UKX; ~ 6x,)] at &, (4a)

for arbitrary infinitesimal variations 8X;. Alternative-
ly, the minimum property of U can be expressed through
the usual second-derivative condition'®

*y

oR
Z 0y
ax?

= =0
¢ X,

= (4b)
:

s

expressing the upward curvature of the energy function
with respect to small displacements about the isolated
equilibrium state. Inequalities (4) essentially summa-
rize Le Chatelier’s principle concerning the restorative
tendency (e.g., stability) of thermodynamic equilibrium,
Since the X,;’s denote arbitrary linear combinations of
the chosen set of reference extensities, it is necessary
that conditions (3) and (4) be understood to hold for each
value of the index ¢, and for every possible manner of
choosing the X;’s.

[We do not include the “third law of thermodynamics”
(Nernst postulate?®) in this brief synopsis. The third
law occupies a quite different position in the traditional
thermodynamic formalism than do the first and second
laws,?! and apparently plays only a rather indirect role
in the construction of the metric geometry,??]

B. Scope of a thermodynamic description

Although the fundamental equation (1) materially sim-
plifies the thermodynamic analysis and allows for easy
expression of the first and second laws, it is apparent
that this function contains more information than is
strictly necessary for a thermodynamic description of a
given equilibrium state. Indeed, the full functional form
of the fundamental equation is seldom, if ever, known in
practice.?® To properly characterize the basis of the
thermodynamic analysis, we should therefore distinguish
features of the fundamental equation which are essential
from those which are inessential to the thermodynamic
description of a given state. In effect, this delineation
of the natural scope of a thermodynamic description will
indicate an important simplifying feature of the formal-
ism.

Following Gibbs, ?* we may regard the stability condi-
tion (4) as a characteristic criferion for a state of ther-
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modynamic equilibrium. As such, it provides a form
of definition of the equilibrium state, and thus of the
characteristic scope of its thermodynamic description,
In particular, we can observe that conditions (3) and (4)
involve at most the first derivatives of field quantities
R;. It is therefore appropriate to restrict attention to
those properties which refer only to this limited feature
of the field functions R;.?® Conversely, for the usual
class of thermodynamic properties of interest, one
needs to consider only a rather simple aspect of the
functional behavior of these field functions, namely,
their lowest-order derivative. For this reason, the
space of field functionshas, forthermodynamic purposes,
a very much simpler structure than might otherwise be
supposed.

For example, one might choose to introduce some new
set of field variables R; which are arbitrary functions of
the reference fields R;,

Ri:Ri(RI} Rz,..-, RT)) i:l’ 2’..., s (53.)
subject only to the usual condition of independence

3B, Ryyoony R,)

3Ry, Ryy .+ .., R,)

But if R and R are two “different” field variables whose
first differentials coincide at the point £,

dRr (&) =dR(§), (6a)

then they could be used interchangeably for calculating
the properties of the state £, and need not be further
distinguished, 28

0 at £, (5b)

R “=” R for state £, (6b)

More generally, the differential of any permissible
thermodynamic field quantity R; can be expressed in the
neighborhood of equilibrium state £ as a simple linear
combination of the differentials dR; of some chosen ref-
erence set,

- r
dR; :jz_;a,-, dR;, (7
where
9R,
= ek
ayy aRjL . (8)

Equation (7) allows one to associate with each permissi-
ble field variable R; a coefficient vector a,,

®
£
it
.
—_
©
z

which can be used to label the field (for thermodynamic
purposes)

Rai :éi (10)

in a unique manner; note that the label a; depends gen-
erally on the particular equilibrium state £ under dis-
cussion, as well as on the specific choice of reference
fields R;. K A and u are arbitrary scalars, it then fol-

J. Chem. Phys., Vol. 63, No. 6, 15 September 1975

Downloaded 06 Nov 2008 to 129.25.7.39. Redistribution subject to ASCE license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



F. Weinhold: Metric geometry of equilibrium thermodynamics 2481

lows that
dRupuaj:MRai* “dRa, ’ 1)

which expresses directly the linear character of the field
space in the domain of thermodynamic interest, e.g., in
the immediate neighborhood of the equilibrium state §.

As a further consequence of this linearity, the gener-
al notion of conjugacy between fields and extensities can
be retained even for field variables introduced in a quite
arbitrary manner, For if we suppose that differentials
of the old and new fields are connected as in Eq. (7) by
a get of linear equations whose coefficients are elements
of a matrix A,

(A);;=ay,, (12)

then the inverse transpose matrix A" [which must exist
in view of Eq. (5b)] will have elements, denoted @,

(A%), = (A™),; =ay, 13)

which will serve to define the appropriate set of conju-
gate extensities X; through the equation

z, =;:a,,x,. (14)

Indeed, one can show without difficulty that

8 r
ﬁgj: a,R,, (15)

and hence that?®
R, “=" aU/8X, (16)

for thermodynamic purposes, since the differentials of
these two functions coincide in state &.

C. Summary

In summary, the key empirical observations which a
formal theory of equilibrium thermodynamics must un-
dertake to incorporate, and draw inferences from, in-
clude the following.

(a) The observation that properties of an equilibrium
system may be associated with low-order derivatives
(specifically, the » independent field differentials dR;)
of a mathematical function U which (i) involves only a
small determinate number » of independent state vari-
ables, and (ii) is sufficiently smooth to permit applica-
tion of the partial differential calculus in the usual man-
ner.

(b) The first law, e.g., the observation that the in-
ternal energy function U satisfies the requirement for
an exact differential,

oR,| _oR,
ox,|, ax,l,’

{c) The second law, e.g., the observation that inter-
nal energy is minimized in an isolated equilibrium state?

SRyl - .
Xy

I1l. CONSTRUCTION OF A THERMODYNAMIC
METRIC

It is well known that abstract mathematical objects
can sometimes be ascribed an abstract metric character,
i.e., can be associated with elements of an abstract
metric space in a manner which allows these objects to
be manipulated like ordinary vectors in an ordinary Eu-
clidean space. A familiar example in quantum mechan-
ics is the abstract metric Hilbert space, which permits
wavefunctions to be dealt with as “state vectors” having
many properties in common with ordinary Euclidean
vectors. We now inquire whether such an association
can be found within the formalism of equilibrium thermo-
dynamics.

The key mathematical requirement for an abstract
metric space M, of dimension ris that it should be pos-
sible, for any pair of “vectors” I®;), I&,), to form a
scalay product (®; |&,) having the properties®®

@) @ IA&; +uR) = MR, IR) + u(R,; IR,
b)) ®IR)=@®, IR,
¢} (®;1®,)=0 (equality only if |®,)=0).

In particular, the distributive axiora (a’) requires that
it should always be meaningful to form the vector

AR, +u®R)) =\ |&) +u|&,) a7

from any pair of vectors I®;), I®,) and real scalars A,
K. An abstract space having properties (a’)-(c") is
mathematically isomorphic to a corresponding Euclidean
space of » dimensions.??

It is now possible to establish the essential equiva-
lence of the empirical laws (a)-(c) (Sec. IIC) and the
mathematical axioms (a’)-(c”) by formally associating
with each field differential dR; an abstract vector,

dR,— |®y), (18)

with the scalar product

®|®,) = ZR (19)

80X,
In this equation, X, represents the extensive variable
conjugate to R, in the sense of Eq. (2) (for a reference
field) or in the generalized sense of Eq. (16) (for an ar-
bitrary field).

With the identification, Eq. (19), of the scalar product
it can be recognized that observation (a), which led to
Eq. (11), will cause Eq. (17) and the distributive axiom
(') to hold. Moreover, the correspondence between (b)
and (b’) can be readily seen, as can the general corre-
spondence between (c) and (¢’). In this latter case, how-
ever, an additional comment is necessary with respect
to the non-negativity axiom (c’), since it has not been
made explicit that the parenthesized condition ((®, |®],)
=0 to imply |®,)=0) has a proper counterpart in the
thermodynamic observations (a)-(c), e.g., that aRr;/
8X; =0 implies dR; =0.

b

To see that this is the case, suppose on the contrary
that 8R;/aX; =0 for some nonzero field differential dR,,
which can then be taken as one of the » independent field
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differentials to describe the system. The usual condi~
tion of independence of these field differentials, the non-
vanishing of the Jacobian determinant,

a(Rh Rz; LN ) Rr) %i
=det %0 20
Xy, X5, ...y X,) 8x,| 7’ (20)

is, however, incompatible with the assumption
3R, /83X, =0, 21)

since it is well known from general matrix theory that a
positive semidefinite matrix®® with any vanishing diago-
nal element is necessarily singular.®' Therefore, equal-
ity in Eq. (21), except for the trivial case dR; =0, is in
effect incompatible with the Gibbs phase rule, inasmuch
as it would imply the existance of some new field vari-
ables in which thermodynamic equations of state could
be written with fewer than » variables. Thus, the ab-
stract axiom (¢’) must also be fulfilled by the thermody-
namic observations (a)-(c) in respect to the special case
(®,;1®,)=0,% and the formal association of the basic em-
pirical observations of equilibrium thermodynamics with
the mathematical axioms of an abstract geometry is
thereby complete. Of course, the number » of indepen-
dent thermodynamic field differentials is finally to be
associated with the dimensionality of the metric space
9,, as our notation has anticipated.

Iv. CONCLUSION

The empirical laws of equilibrium thermodynamics
have been shown to reflect an interesting underlying
structure of a geometric nature. The close connection
between these thermodynamic laws and the axioms of an
abstract metric space suggests that the latter mathemat-
ical structure may allow for an alternative representa-
tion of the thermodynamic formalism with certain pos-
sible advantages over the traditional one, Such a geo-
metric representation would naturally invite use of vec-
tor- and matrix-algebraic methods in place of the partial
differential equations of the usual approach. It is in-
tended that various aspects of such a complementary
representation of equilibrium thermodynamics will be
investigated in subsequent papers.
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