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Dynamics of the relaxation of a perturbed thermodynamic system to equilibrium is determined
by the generalized eigenvalue equation (K̃αβ + λSαβ)yβ = 0. Here Sαβ is a matrix of linear
response coefficients and K̃αβ is a matrix of kinetic coefficients. We describe LeChatelier’s
Principle and both its static and dynamical symmetries, and treat cases in which there are
multiple relaxation channels. The treatment simplifies when the relaxation channels have widely
separated time scales.

I. INTRODUCTION

LeChatelier’s Principle is a statement about

how a system in thermodynamic equilibrium re-

sponds to a perturbation. In brief, after the per-

turbation the system relaxes back to an equilib-

rium. This equilibrium is the highest possible en-

tropy state, or the lowest possible energy state,

that is available to the system under the con-

straints that have been imposed. If one or more

relaxation channels are closed, the new equilib-

rium will be different from the original equilib-

rium.

LeChatelier’s Principle is usually stated in qualitative
terms. When it is described quantitatively it is almost al-
ways in terms of responses to a perturbation from equilib-
rium when a single reaction channel opens up [1, 2]. The
case of intermediate responses when there is a succession
of relaxation channels with widely separated time scales
has been discussed quantitatively in [3]. In this work we
describe the dynamical response of a system with any
number of relaxation channels to an arbitrary perturba-
tion. The relaxation time constants are determined from
a generalized eigenvalue equation. This equation involves
the static linear response functions and their dynamic
counterparts, the kinetic coefficients. The eigenvalues
are well-defined functions of both sets of coefficients.

The generalized eigenvalue equation is first expressed
in the entropy representation. In this representation the
entropy, S(t), continuously increases after the pertur-
bation until the new equilibrium is reached. We then
transform to the energy representation using what is for
all practical purposes a similarity transformation. In this
representation the internal energy, U(t), continuously de-
creases after the perturbation until the new equilibrium
is reached. Constraints that prevent the system from
returning to its original equilibrium configuration are ex-
pressed naturally in this eigen-representation. Such con-
straints are represented by vanishing eigenvalues.

Natural extensive variables, and their conjugate inten-
sive variables, are summarized in Table I for the two ther-

TABLE I: Natural conjugate variable pairs (Extensive,
intensive) in the entropy and energy representations.

Representation
Entropy Energy

Xα yα Eα iα
U 1/T S T
V P/T V −P
N −µ/T N µ

modynamic representations. Throughout we use contra-
(α) and co- (α) variant notation for extensive and inten-
sive thermodynamic variables. This notation is based on
the geometric formulation of classical thermodynamics
[4, 5, 6, 7].

In Sec. II we briefly review the properties of the ma-
trices of static and dynamic coefficients, and then write
down and justify the generalized eigenvalue equation that
describes LeChatelier dynamics. In Sec. III we transform
to the more familiar energy representation. We illustrate
how constraints are handled in Sec. IV in terms of a
simple example with a single relaxation channel. In Sec.
V we review the symmetries that exist in single channel
processes. They are of two types. One involves the ratios
of asymptotic responses under dual perturbations. The
other involves a single relaxation time constant, also un-
der dual perturbations. In Sec. VI we treat the case in
which there are multiple relaxation channels with widely
separated time scales. The results are summarized in Sec.
VII.

II. ASSUMPTIONS AND EQUATIONS -

ENTROPY REPRESENTATION

Two fundamental equations describe the dynamics of
LeChatelier’s Principle. In the entropy representation
these are
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δXα = Sαβδyβ (Statics) (1)

d

dt
δXα = K̃αβδyβ (Dynamics) (2)

These equations describe very different physical pro-
cesses.

The first equation describes “static” or “adiabatic”
(meaning very slow) equilibrium processes. At equilib-
rium the entropy is a function of its natural extensive
variables X (c.f., Table I). We assume there is an equilib-
rium for values Xα

0 of the extensive thermodynamic vari-
ables, and yα(X0) = ∂S

∂Xα (X0) are the values of the con-
jugate intensive thermodynamic variables at this equi-
librium. If the extensive variables are changed to new
values Xα

0 + δXα slowly, so that the system moves on
the equilibrium surface S = S(X), the intensive vari-
ables will slowly change to new values yα(X0) + δyα.
For small displacements the linear relation between the
displacements of extensive and intensive thermodynamic
variables is given by Eq. (1). The n × n real symmetric
matrix Sαβ of static susceptibilities is the inverse of the

matrix Sαβ =
(

∂2S(X)
∂Xα∂Xβ

)

X0

. This matrix is negative def-

inite at equilibrium, since the entropy is a maximum at
equilibrium. The susceptibilities Sαβ and Sαβ are intrin-

sic to the thermodynamic system: they are independent
of the container holding the material.

The second equation above relates “forces” to fluxes”.
The generalized forces are the differences in the intensive
variables, δyβ, across some sort of barrier separating the
system of interest (A) from the outside world (B). The
generalized fluxes, d

dt
δXβ, are the time rates of change

of displacements of the extensive variables as the sys-
tem tries to relax to equilibrium: the highest available
entropy state. Eq. (2) is a linearization of the general

equation ˙δX
α

= Fα(δy) near the equilibrium manifold

[8]. The matrix K̃αβ of kinetic coefficients obeys the On-

sager symmetry K̃αβ(t) = K̃βα(−t) [9] and is positive

semidefinite. The kinetic coefficients K̃αβ are extrinsic:
they depend on the container holding the material and
can be changed from one experiment to another.

The positivity property of the matrix of kinetic coeffi-
cients can be seen by computing the time rate of change
of the combined entropy of the two systems A + B:

d

dt
(SA + SB) =

∂SA

∂Xα
A

dXα
A

dt
+

∂SB

∂Xα
B

dXα
B

dt
= ((yA)α − (yB)α)dXα

A/dt

= δyαK̃αβδyβ ≥ 0

(3)

We have exploited conservation of extensive quantities:
Xα

A + Xα
B = Xα

Tot = const., so that Ẋα
A = −Ẋα

B.
We point out here that by simple dimensional consid-

erations, the dimensions ([∗]) of the kinetic coefficients

are closely related to the dimensions of the correspond-

ing equilibrium linear response coefficients:
[

K̃αβ
]

=
[

Sαβ
]

(time)−1.
We now assume that under a sudden perturbation from

equilibrium Xα
0 → Xα

0 + ∆Xα, the subsystem remains
homogeneous (no sound waves) and the relation between
the extensive and intensive variables given in Eq. (1)
remains valid. In this case we can write Eq. (2) as

d

dt
Sαγδyγ = K̃αβδyβ (4)

Since this is a linear equation we can assume an exponen-
tial time dependence of the form δyβ(t) = δyβ(0+)e−λt.
This leads directly to a generalized eigenvalue equation

(

K̃αβ + λSαβ
)

δyβ(0+) = 0 (5)

The eigenvalues λ are nonnegative because Sαβ is nega-
tive definite and K̃αβ is positive semi-definite. These are
thermodynamic stability conditions.

The number of independent decay channels is the num-
ber of nonzero eigenvalues of this generalized eigenvalue
equation. Equivalently, it is the number of nonzero eigen-
values of the matrix K̃αβ. The number of vanishing
eigenvalues is the number of independent constraints pre-
venting decay.

The eigenvectors vi with eigenvalues λi and compo-
nents vαi of this generalized eigenvalue equation are mu-
tually orthogonal with respect to the metric −Sαβ and
can be normalized as follows:

vαi(−Sαβ)vβj = δij

vαi(+K̃αβ)vβj = λiδij
(6)

They evolve in time like vαie
−λit. The time evolution of

the intensive displacements is given by

δyα(t) =

n
∑

j=1

ajvαje
−λjt (7)

The coefficients aj are determined in the usual way - by
matching initial conditions:

SαβδXβ(0+) = δyα(0+) = vαjaj (8)

and inverting this matrix relation.
Equation (5) shows how the relaxation time scales λ−1

i

are determined as functions of both the static and ki-
netic coefficients. Equation (8) describes how the initial
conditions enter into the dynamics.
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III. ENERGY REPRESENTATION

The entropy and more familiar energy represen-

tation are related by something like a similarity

transformation. Specifically, the matrix transforma-
tion relating displacements of the independent extensive
variables in the two representations (c.f., Table I) is

dEα = Rα
β dXβ eg.





dS
dV
dN



 =





1
T

P
T

−
µ
T

0 1 0
0 0 1









dU
dV
dN





(9)
The intensive variables are related by dy = −

1
T

Rtdi. In
the energy representation the static and dynamic equa-
tions are

δEα = Uαβδiβ U = −
1
T

RSRt

d
dt

δEα = Kαβδiβ K = −
1
T

RK̃Rt (10)

The generalized eigenvalue equation in this representa-
tion is

(

Kαβ + λUαβ
)

δiβ(0) = 0 (11)

The more familiar linear response coefficients in the

energy representation are Uαβ =
(

∂2U(E)
∂Eα∂Eβ

)

−1

. This ma-

trix is positive definite, since U is a minimum at equilib-
rium. Similarly, the kinetic coefficients K in this repre-
sentation form a negative semidefinite matrix, by argu-
ments similar to those surrounding Eq. (4).

Since U∗∗ and K∗∗ are related to S∗∗ and K̃∗∗ by
identical transformations, the eigenvalue spectrum is the
same in both representations. This must be true on the
basis of physical arguments. The eigenvectors differ by
the transformations in Eq. (10) involving the nonsingular
change of basis matrix Rα

β .

IV. CONSTRAINTS

We illustrate what happens when constraints are
placed on the system by considering a simple gas in a
cylinder [2]. The generalized eigenvalue problem in the
energy representation has the form

{[

−K11 −K12

−K21 −K22

]

+ λ

[

U11 U12

U21 U22

]}(

∆T (0)
−∆P (0)

)

= 0

(12)
The standard linear response functions are

[

U11 U12

U21 U22

]

=

[

CP /T V αP

V αP V βT

]

(13)

and

FIG. 1: The entropy is suddenly increased inside a cylin-
der that is thoroughly insulated (KSS = 0). The tem-
perature, pressure, and volume evolve in time as shown
in Fig. 2.

[

U11 U12

U21 U22

]

−1

=

[

U11 U12

U21 U22

]

=

[

T/CV 1/V αS

1/V αS 1/V βS

]

(14)
We have exhibited the negative signs explicitly for the
negative semidefinite matrix of kinetic coefficients K, and
we further take K to be diagonal. The matrix element
K11 = KSS is measured in entropy flux per unit tem-
perature increase and K22 = KV V defines the rate of
volume change per unit decrease in pressure.

If the piston separating the gas in the cylinder from
the reservoir is a good insulator (Fig. 1), K11 = 0, there
is one constraint and one vanishing eigenvalue. The un-

normalized eigenvector with λ1 = λS = 0 is

(

1
0

)

. The

second eigenvalue is λ2 = λV = K22U22 and the corre-

sponding unnormalized eigenvector is

(

−U12

U11

)

. These

two eigenvectrors are orthogonal under the metric U∗∗.
The intensive variables evolve in time like
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FIG. 2: Response of the perturbations to the experiment
shown in Fig. 1.The single decay time scale is determined
by λ2 = K22U22.

[

∆T (t)
−∆P (t)

]

= a1e
0t

[

1
0

]

+ a2e
−λ2t

[

−U12

U11

]

(15)

For this case ∆S(0+) = ∆S, ∆V (0+) = 0 and Eq. (8)
is explicitly

[

U11 U12

U21 U22

] [

∆S
0

]

=

[

∆T (0+)
−∆P (0+)

]

=

[

1 −U12

0 U11

] [

a1

a2

]

(16)
The coefficients are a1 = ∆S/U11, a2 = ∆S U21/U11.
The values of the two pairs of conjugate variables, un-
der the no heat flow constraint K11 = 0, are given at
t = 0+ and t → ∞ in Table II. The evolution of these
perturbations is shown in Fig. 2. All variables except
∆S have the same characteristic decay time λ−1

V , since
there is only one decay channel.

The dual constraint is illustrated in Fig. 3. In this case
the piston is suddenly displaced and maintained fixed at
its new position. This constraint is represented by set-
ting K22 = 0: the rate of volume change per negative unit
pressure change is zero. In this case the zero eigenvalue is
λV = 0 and the nonzero eigenvalue is λS = K11U11. The
solution is computed as before, subject to initial condi-
tions ∆V (0+) = ∆V fixed and ∆S(0+) = 0. The asymp-
totic behavior (t = 0+, t → ∞) is summarized in Table
II. As for the case shown in Fig. 1, all variables except
∆V have the same characteristic decay time λ−1

S , since
there is only one decay channel. The time evolution of
these four variables is similar to that shown in Fig. 2,
with the exchange (∆S, ∆T ) ↔ (∆V,−∆P ). If the decay
times are identical (λV in Fig. 1 and λS in Fig. 3) the
two processes exhibit dynamical symmetry as well as the
asymptotic symmetry described in the next section.

V. SYMMETRIES

It is possible to compare products of extensive vari-
ables with their conjugate intensive variables, since all

FIG. 3: The volume of a cylinder is suddenly increased
and the piston is glued at its new position (KV V = 0).

such products have the dimensions of energy. Ta-
ble II shows that the only nontrivial product of the
responding variables is ∆Er(∞)∆ir(0

+). This can be
compared with the “cross product” of the forcing vari-
ables ∆Ef (0+)∆if (∞). The result in the two cases
above is

∆Er(∞)∆ir(0
+)

∆Ef (0+)∆if (∞)
= UfrUfr (17)

This is true in general. The ratios of all such prod-
ucts are given by the elements of the LeChatelier ma-
trix Lαβ = UαβUαβ = Lβα [1, 2, 3]. This matrix
is real and symmetric. Its diagonal matrix elements
are greater than one [1, 2, 3, 7]. These are thermo-
dynamic stability conditions. They provide quantita-
tive expressions for LeChatelier’s Direct Principle. If
an extensive forcing variable is suddenly changed and
held constant, ∆if (0+)/∆if (∞) ≥ 1. Dually, if an in-
tensive variable is suddenly changed and held constant,
∆Ef (∞)/∆Ef (0+) ≥ 1 [1, 2, 3]. Further, the sum of the
matrix elements Lαβ in each row and in each column is
equal to 1. Finally, if the forcing and responding vari-
ables are interchanged, the cross ratios as given in Eq.
(17) are equal, as seen in Table II.

Further symmetries are present for systems with two
degrees of freedom. In such cases the constraint requires
one of the two eigenvalues to vanish. The two systems
have identical relaxation time scales provided the nonzero
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TABLE II: Values of the thermodynamic variables under
constraints for a gas in a cylinder.

Fig.1 Forcing Responding
Channel Channel

∆S ∆T ∆V −∆P
λS = 0 − λV = K22U22 −

t = 0+ ∆S ∆S × U11 0 ∆S × U21

t → ∞ ∆S ∆S/U11 ∆S × U21/U11 0

Fig.3 Responding Forcing
Channel Channel

∆S ∆T ∆V −∆P
λS = K11U11 − λV = 0 −

t = 0+ 0 ∆V × U12 ∆V ∆V × U22

t → ∞ ∆V × U12/U22 0 ∆V ∆V/U22

eigenvalues are equal. The condition is that the nonzero
kinetic coefficient Kjj multiplied by the corresponding
covariant matrix element Ujj is the same for both exper-
iments.

Finally, if the initial perturbations, ∆S in Fig. 1 and
∆V in Fig. 3, obey (∆S)2/U11 = (∆V )2/U22, the time
dependence of the internal energy, U(t), is exactly the
same for both experiments.

VI. CASCADING CONSTRAINTS

When there are multiple relaxation channels with
widely differing time scales, the general solution that
mixes the static and dynamic coefficients given in Eq. (5)
simplifies. For specificity we consider a system with three
degrees of freedom for which the matrix of kinetic coeffi-
cients is diagonal with K11/K22 ≪ 1 and K22/K33 ≪ 1.
The equation determining the eigenvalues/eigenvectors
of this problem is







−





K11 0 0
0 K22 0
0 0 K33



 − λ





U11 U12 U13

U21 U22 U23

U31 U32 U33















v1

v2

v3



 = 0

(18)
The matrix of eigenvectors is upper triangular:

V = [vαj ] =





v11 v12 v13

0 v22 v23

0 0 v33



 (19)

The three eigenvalues satisfy

Kjjv2
jj = λjv

t
jU

∗∗vj = λj

j
∑

α,β=1

vαjU
αβvβj (20)

to an excellent approximation. The components vαj of
the jth eigenvector vj can be constructed directly from
the j × (j − 1) submatrix in the upper left-hand corner
of the matrix U∗∗ of susceptibilities. The component vαj

is the minor of this submatrix obtained by removing row
α. The three eigenvectors of Eq. (19) are, to a very good
approximation





1
0
0









−U21

U11

0









+(U21U32 − U31U22)
−(U11U32 − U31U12)
+(U11U22 − U21U12)



 (21)

The eigenvalues are easily determined from these eigen-
vectors and Eq. (21).
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FIG. 4: Response of all thermodynamic variables when
three channels have widely separated time scales and the
slowest extensive variable is perturbed.

In Fig. 4 we illustrate the dynamics when there are
three channels with widely separated relaxation time
scales T3 ≃ 100, T2 ≃ 104 and T1 ≃ 108, with Tj = 1/λj.
In this figure the extensive variable with the longest re-
laxation time, E1, is initially perturbed. Immediately
following the perturbation all three intensive variables
assume nonzero values while the remaining two exten-
sive variables remain zero.

As t passes through the shortest time scale, T3 ≃ 100,
all three intensive variables relax to new values; the force
with the shortest time scale, ∆i3, drops to zero. Its con-
jugate extensive variable ∆E3, rises to a nonzero value.
Although ∆i1 and ∆i2 relax to new values, ∆E1 and
∆E2 remain unchanged at the initial value and zero, re-
spectively. As t passes through the intermediate time
scale T2, the force ∆i2 drops to zero and its conjugate ex-
tensive variable, ∆E2, becomes nonzero. The extensive
variable ∆E3 with the shorter time scale relaxes to a new
value while the extensive variable ∆E1 with the longer
time scale continues to remain unchanged. Finally, as
(if) t exceeds the longest time scale T1 the corresponding
force ∆i1 also drops to zero. At this point, all pertur-
bations have relaxed to zero when no eigenvalues of the
generalized eigenvalue equation are zero.
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The succession of steps is summarized in Table III.
This table also includes cases for which the extensive
variables E2 with intermediate time scale, and E3 with
shortest time scale are initially perturbed.

Throughout this relaxation process the linear relation
Eq. (1) between extensive and intensive thermodynamic
variables is maintained. In the quiet regimes between
time scales Tj+1 ≪ t ≪ Tj the three thermodynamic
variables (labeled with *) can be determined from the
three that are given explicitly in Table III by simple ma-
trix methods previously introduced to simplify the com-
putation of thermodynamic partial derivatives [5, 6].

When “faster” extensive thermodynamic variables are
initially perturbed the relaxation takes place faster, as
shown in Table 3. This comes about because the faster
variables do not have sufficient time to feed into the
slower extensive variables before they relax to zero.

VII. CONCLUSIONS

The dynamical aspects of LeChatelier’s Principle are
described by the generalized eigenvalue equation Eq. (5)
in the linear response regime. The number of closed and
open relaxation channels is determined by the number of
zero and nonzero eigenvalues of the matrix of kinetic co-
efficients. The nonzero eigenvalues are complicated func-
tions of the matrices of static and dynamic (kinetic) co-
efficients determined through the generalized eigenvalue
equation. These equations were constructed in both the
entropy (Eq. (5)) and energy (Eq. (11)) representations.
There is, as usual, a clean separation of the dynamics
into the equations of motion and the initial conditions
(Eq. 8).

When there is a single relaxation channel there is
only one decay time scale. Under such conditions the
LeChatelier symmetries are exhibited [1, 2, 3]. These
symmetries relate products of conjugate variables in the
asymptotic limits t = 0+ and t → ∞. If the nonzero
kinetic coefficients are properly adjusted, so that the re-
sponding time scales in dual experiments are equal, there
is also a dynamical symmetry.

When two or more relaxation channels exist and are
well-separated in time, the successive relaxations through
each of the widely separated time scales can be treated
as if each was a single channel relaxation with a single
time scale. In such cases the asymptotic and even the
dynamical symmetries exist on each side of the newly-
opened relaxation channel, as shown in Fig. 4 and Table
III.

Acknowledgment: It is a pleasure to acknowledge
the inspiration afforded by Prof. R. D. Levine for this
problem.

TABLE III: Succession of steps as t increases when
λ1 ≪ λ2 ≪ λ3 or T3 ≪ T2 ≪ T1 and the initial pertur-
bation is in the extensive variable corresponding to the
longest (top), intermediate (middle) and shortest (bot-
tom) time scale. Each matrix contains three pairs of
extensive and conjugate intensive variables (∆Eα, ∆iα),
ordered by relaxation time scale from slowest (top) to
fastest (bottom).

t = 0+ ≪ T3 ≪ t ≪ T2 ≪ t ≪ T1 ≪ t





∆E1, ∗
0, ∗
0, ∗









∆E1, ∗
0, ∗
∗, 0









∆E1, ∗
∗, 0
∗, 0









0, 0
0, 0
0, 0









0, ∗
∆E2, ∗

0, ∗









0, ∗
∆E2, ∗
∗, 0









0, 0
0, 0
0, 0









0, ∗
0, ∗

∆E3, ∗









0, 0
0, 0
0, 0




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