the resonance occurs for @ = + @, while in.the case of the
electron in crossed E, and B, the resonance occurs only for
® = + w,. The reason is that in the charged oscillator the
electromagnetic field always resonates with the charge at
|@| = ||, whilein the second case the circularly polarized
wave resonates with the electron only if the wave field ro-
tates in the same sense of the electron.

'A. S. Davydov, Quantum Mechanics, 2nd ed. (Pergamon, New York,
1976).

2R. H. Dicke and J. P. Wittke, Introduction to Quantum Mechanics (Ad-
dison-Wesley, Reading, MA, 1960).

®). F. Seely, Am. J. Phys. 42, 326 (1974).

4L. C. M. Miranda, J. Phys. C9, 2971 (1976).

5A. 1. Morozov and L. S. Solov’ev, in Reviews of Plasma Physics, edited by
M. A. Leontovich (Consultants Bureau, New York, 1966), Vol. II, p. 201.
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Le Chatelier’s principle is discussed carefully in terms of two sets of simple thermodynamic
examples. The principle is then formulated quantitatively for general thermodynamic systems.
The formulation is in terms of a perturbation-response matrix, the Le Chatelier matrix [L ]. Le
Chatelier’s principle is contained in the diagonal elements of this matrix, all of which exceed one.
These matrix elements describe the response of a system to a perturbation of either its extensive or
intensive variables. These response ratios are inverses of each other. The Le Chatelier matrix is
symmetric, so that a new set of thermodynamic reciprocal relations is derived. This quantitative
formulation is illustrated by a single simple example which includes the original examples and
shows the reciprocities among them. The assumptions underlying this new quantitative
formulation of Le Chitelier’s principle are general and applicable to a wide variety of
nonthermodynamic systems. Le Chételier’s principle is formulated quantitatively for mechanical

systems in static equilibrium, and mechanical examples of this formulation are given.

L. INTRODUCTION

It is amazing how well Le Chatelier’s principle is known,
yet how poorly it is treated in the literature of thermody-
namics. Most thermodynamics treatises do not discuss it at
all. Of those that do, about half claim it states that when a
system is perturbed, it responds in the direction of the per-
turbation, the other half claiming the system will respond
in the opposite direction. Rare is the treatise that makes a
precise statement; rarer still one that makes a quantitative
statement. No source at all considers responses among oth-
er than conjugate variables. The treatment of Le Chate-
lier’s principle in the literature of thermodynamics is so
deficient that it has been criticized in the literature of eco-
nomics. Samuelson writes' that the statement of this prin-
ciple usually “is given vague and even mystical formula-
tion, couched in teleological language reminiscent of
Adam Smith’s beneficent ‘invisible hand’ that leads self-
centered competition unwittingly to the social good. The
following formulation is typical: ‘If the external conditions
of a thermodynamic system are altered, the equilibrium of
the system will tend to move in such a direction as to op-
pose the change in external conditions.”” Samuelson
quotes Fermi.?

There are two major sources of confusion surrounding
Le Chitelier’s principle:

(1) Does it describe the (a) direct response of a thermo-
dynamic variable to a perturbation of its conjugate vari-
able,® or the (b) indirect response to a perturbation, ob-
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tained by allowing secondary forces to operate?*>
In the latter case

(2) Is the indirect response to the perturbation (a) larger
than,* or (b) smaller than® the direct response?

For the first question, direct responses involve state-
ments about partial derivatives of a thermodynamic vari-
able with respect to its conjugate variable, such as
(@S /9T),,, or (IT /3S),,,. All such thermodynamic re-
sponse functions are positive. This is a stability require-
ment of the second law of thermodynamics. This suggests
that Le Chatelier’s principle must be about indirect re-
sponses to perturbations. In fact, Le Chételier’s principle
wasﬁintended to be the thermodynamic analog of Lenz’s
law®:

When a force acting on a primary electric current in-

duces a secondary current, the direction of the latter is

such that its electrodynamical action opposes the acting
force.

For the second question, two separate situations can oc-
cur.

(1) If an extensive variable is perturbed, the direct re-
sponse of the conjugate intensive variable is larger than its
indirect response.*

(2) If an intensive variable is perturbed, the direct re-
sponse of the conjugate extensive variable is smaller than
its indirect response.’

This dichotomy was first noticed by Ehrenfest,” who
proposed that this principle should be stated separately for
these two cases.
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Le Chitelier’s principle, as applied to perturbations of
extensive variables, is illustrated by two simple thermodyn-
amic examples in Sec. II. In Sec. III, this principle is illus-
trated for perturbations of intensive variables using two
similar examples. In Sec. IV we present a precise formula-
tion of Le Chatelier’s principle, considering responses of
nonconjugate as well as conjugate variables to perturba-
tions of either an extensive or an intensive variable. This
formulation, which is quantitative, is presented in terms of
a perturbation-response matrix [ L,z ]. This matrix is sym-
metric and positive definite. The diagonal matrix elements
describe Le Chatelier’s principle and the off-diagonal ma-
trix elements describe a new set of reciprocal relations. In
Sec. V this generalized principle is used to illustrate the
relationships among the two pairs of examples discussed in
Secs. II and III.

The arguments leading to this perturbation-response
formulation of Le Chitelier’s principle are rather general,
and therefore widely applicable. In particular, they are ap-
plicable to mechanical systems in stable static or dynamic
equilibrium. This principle is formulated also for static me-
chanical systems in Sec. VI. Its application is illustrated by
two simple examples: one (Sec. VII) for perturbation of a
generalized displacement (extensive variable), the other
{Sec. VIII) for perturbation of a generalized force (intensive
variable).

II, PERTURBATION OF EXTENSIVE VARIABLES:
TWO EXAMPLES

Example 1

We consider a gas contained within a cylinder sealed off
by a heavy piston [Fig. 1(a)]. The cylinder is well insulated.
Initially, the temperature and pressure of the gas within the
cylinder are equal to the temperature and pressure of the
surrounding reservoir. At time ¢ = 0, the entropy of the gas
within the cylinder is suddenly increased by a small
amount (4S'). A short time later ( = 0 ) the gas within the
cylinder has reached a state of thermodynamic equilibrium
with itself but not with its surroundings [Fig. 1(b)]. The
pressure difference will eventually drive the piston
outward until a new state of constrained equilibrium is

TP

(a)

t<o RESPONSES

(d)

reached as t— oo [Fig. 1(c)]. In this new equilibrium state,

the pressure difference vanishes, but the temperature dif-

ference does not, since the cylinder, including the piston, is
insulated. However, the temperature difference between
the insulated walls of the cylinder has decreased.

The responses of the four thermodynamic variables as a
function of time are as follows:

A4S: S suddenly is increased by 45 at t =0 and is con-
strained at S + 4S5 for all #> 0 because the cylinder is
insulated.

AV: AV (t = 0%) ~0 because it takes a finite time for the
force on the piston (F~A4P) to move the piston a finite
distance. Eventually AV (t— ) > 0.

AP: AP(t = 07)> Obecause the gas temperature suddenly
rises at # = 0. Eventually AP (¢ }—0 as t— .

AT: AT(0*)>0 because A4S >0. As —> o, the tempera-
ture change AT (¢) will decrease because the pressure
decreases as the volume increases. Eventually AT (¢)
will approach a final constrained equilibrium value
AT (o0)> 0. The long-term temperature change is posi-
tive because entropy has been added to the gas within
the cylinder.

The four responses AS (¢ ), AV (t), — AP (t),AT (t)tothe
perturbation have been shown schematically in Fig. 1(d).
Theresponse — AP (¢) has been shown instead of + AP(t)
since — P is the conjugate variable to V.

Le Chételier’s principle for this experiment is

AT(0%)>AT(0)>0 (45>0). (1a)

Expressed in terms of thermodynamic partial derivatives
(AS of either sign) it is

(3). > (5), o

Example 2

We consider now a gas contained within an uninsulated
cylinder. The gas is initially in thermodynamic equilibrium
with its surroundings [Fig. 2(a)]. At time ¢ = 0, the volume
of the cylinder is suddenly increased by a small amount
(4 V'), and the piston is locked into its new position. A short
time later (# = 0™") the gas within the cylinder has reached a

Fig. 1. (a) For ¢ < O the gas within the insulated
cylinder has the same temperature and pres-
AS sure as the surrounding reservoir. (b) At 7 = 0,

at(o%)

av(ohzo

M(.)

the entropy of the gas within the insulted cyl-
inder is increased by A4S, and a short time
afterward, at ¢ = 0™, the gas within the cylin-
AV(®) der has reached a state of internal thermodyn-
t amic equilibrium. (c) After a long time

-ap(oh

(c)
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(t— ), the gas within the cylinder has
reached a state of constrained equilibrium
with the reservoir, in which AT #0, AP=0.
(d) The differences between the four thermo-
dynamic variables and their initial {t < 0) val-
ues are shown as a function of time.

-aP(»)=0
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TP
(a)

Fig. 2. (a) For t < 0 the gas within the uninsu-
lated cylinder has the same temperature and
v pressure as the surrounding reservoir. (b) At

\_—-AP(G)

t = 0 the volume of the cylinder is suddenly
increased by 4V, and a short time after-
ward, at t = 0, the gas within the cylinder
has reached a state of internal thermodyna-
mic equilibrium. {c) After a long time

AS(®)

<o T o 1 ° RES?ONSES
]
(d)
-ap(oh)
(b) —
(20" AS=0 av Is(0%)=0
AT< O AP(OY) >

AT(0Y)

(c)

LS >0 AV

AT =0 AP(®)

state of thermodynamic equilibrium with itself, but not

with its surroundings [Fig 2{b)]. The temperature differ-

ence will eventually:drive a flow of heat into the cylinder
until a new state of constrained equilibrium is reached as

t— oo [Fig. 2(c}]. In this new equilibrium state, the tempera-

ture difference vanishes, but the pressure difference does

not, since the piston is locked into its new position. How-
ever, the external force required to hold the piston in its
new position has decreased.

The responses of the four thermodynamic variables as a
function of time are as follows:

AV: V suddenly is increased by 4V at r =0 and is con-
strained at ¥ + AV forall > 0.

AS: AS (t = 0")~0since the rapid expansion is adiabatic.
The increase in entropy is driven by the temperature
difference between the gas in the cylinder and the reser-
voir. Eventually AS (f—0)> 0.

AT: AT (t=07%)<0 because the volume. suddenly in-
creases (at constant entropy) at f=20. Eventually
AT (t)—>0as t—ow.

AP: AP(0")<0because AV > 0. As t— oo, the magnitude
of the pressure change will decrease because of the rise
in temperature. Eventually AP (¢ ) will approach a final
constrained equilibrium value 4P () <0. The long-
term pressure change is negative because the volume of
the cylinder has increased.

The four responses AV (¢),AS (¢),AT (¢), — AP (t)tothe
perturbation have been shown schematically in Fig. 2(d).
The response — AP (¢ ) has been shown instead of + AP ()
since — P is the conjugate variable to V.

Le Chételier’s principle for this experiment is

—AP(0%)> —AP(w)>0 (4¥V>0). (2a)

Expressed in terms of thermodynamic partial derivatives
{4V of either sign) it is

~(5).> (), > P

Comparison

In both these samples we see:
(1) A sudden small change in an extensive thermodyna-
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t
AT{®)z0
]

(t— o), the gas within the cylinder has
reached a state of constrained equilibrium
with the reservoir, in which4 T = 0, 4P #0.
(d) The differences between the four thermo-
dynamic variables and their initial (z <0)
values are shown as a function of time.

mic variable will produce a change in all remaining ther-
modynamic variables.

_(2) The intensive variable conjugate to the perturbed ex-
tensive variable will initially experience a large response in
the direction of the perturbation. This response will dimin-
ish in magnitude as the system relaxes to a new constrained
equilibrium with its surroundings.

(3) The initial response of the “other’ extensive variable,
and the final response of the “other” intensive variable, are
zZero.
~ (4) As the system relaxes toward a constrained equilibri-
um, if the variable conjugate to the perturbation decreases,
the “other” variables both increase, and vice versa.

(5) The initial change of the ‘“other” intensive variable
and the final response of the “other” extensive variable are
opposite in sign.

III. PERTURBATION OF INTENSIVE VARIABLES:
TWO EXAMPLES

Example 1

We consider a gas contained within a cylinder sealed off
by a heavy piston [Fig. 3(a)]. The cylinder is not insulated.
Initially, the temperature and pressure of the gas within the
cylinder are equal to the temperature and pressure of the
surrounding reservoir. At time ¢ = 0 the cylinder is placed
in thermal contact with a new reservoir at the same pres-
sure, but at a slightly higher temperature (by AT). A short
time later (£ = 0™) the gas within the cylinder has reached a
state of thermodynamic equilibrium with itself but not with
its surroundings [Figs. 3(b)]. The pressure difference gener-
ated by the increased temperature will eventually drive the
piston outward until a new state of constrained equilibrium
isreached as #— o [Fig. 3(c)]. As the volume of the cylinder
expands isothermally, the entropy increases further.

The responses of the four thermodynamic variables as a
function of time are as follows:

AT: T is suddenly increased by AT at t =0 and is con-
strained at T+ AT for all ¢ > 0 because the cylinder is
in thermal contact with the new reservoir.

AV: AV (t = 0%)=~0 because it takes a finite time for the
force on the piston to move the piston a finite distance.
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Fig. 3. For t < O the gas within the cylinder is
in equilibrium with its surroundings at tem-
perature T and pressure P. (b) At t =0 the
cylinder is placed in thermal contact with a

AT new reservoir.at temperature T+ AT and
pressure P. A short time afterward, at
t=0%, the gas within the cylinder has
reached a state of internal thermodynamic

(a)
t<0 T Pl RESPONSES AS(00)
S \ s
(d)
(b) T+atp : AV(o0)
AT AP>0 AV(0Y)~0 .t

t=0'! |r5(0*)AV=0

—AP(C*)
(c) T+ATP
oo AT AP=0
t AS(e0)  AV>0
Eventually AV () > 0.

AP: AP (t = 07)> Obecause the gas temperature suddenly
rises at = 0 while the volume of the cylinder remains
essentially unchanged. Eventually AP—0 as t—oo.

A4S: AS(07)>0because AT > 0. As t— oo, the entropy will
further increase as the gas in the cylinder undergoes
isothermal expansion.

The fourresponses AT (t),AV(t), — AP(t),AS (t)tothe

perturbation have been shown schematically in Fig. 3(d).

Le Chatelier’s principle for this experiment is

AS(0)>45(07)>0 (4T>0). (1a’)

Expressed in terms of thermodynamic partial derivatives
(AT of either sign) it is

(37, > (), > o

Example 2’

We consider the same cylinder as in the previous exam-
ple [Fig. 4(a)]. Now, however, the cylinder is removed from

T,P
(a)

RESPONSES
t<0

S \ A»//_Zv(oo)
(d) AV(0*)

— equilibrium. (c) After a long time (r — o)
—AP(o0)=0 the pressure difference has increased the
volume and entropy of the cylinder, which is
now in equilibrium with its surroundings
with AT #0, AP =0. (d) The differences
between the four thermodynamic variables
and their initial (¢ < 0) values are shown as a
function of time,

contact with a reservoir at temperature T and pressure P

with which it is in thermodynamic equilibrium, and placed

in contact with a new reservoir at temperature 7 and pres-
sure P-AP. A short time later ( = 0*) the volume has in-
creased and the temperature decreased while only a small
amount of heat has entered the cylinder [Fig. 4(b)]. The
temperature difference will eventually drive a flow of heat
into the cylinder until a state of thermodynamic equilibri-
um is reached at o0 [Fig. 4(c)]. As the gas within the
cylinder heats up, the volume increases further.

The responses of the four thermodynamic variables as a
function of time are as follows:

AP: Pis suddenly decreased by AP at T =0 and is con-
strained at P-4 P for all > 0 because the cylinder is in
mechanical contact with the new reservoir.

AS: AS (t = 0%)~0 since the rapid expansion is adiabatic.
The temperature difference between the gas in the cyl-
inder and the reservoir drives an increase in entropy.
Eventually AS (t— ) > 0.

AT: AT (t = 0™) < 0 because the cylinder expands adiaba-
tically at = 0. Eventually, AT—0 as t— .

Fig. 4. (a) For ¢ <0 the gas within the cylin-
deris in equilibrium with its surroundings at
temperature T and pressure P. (b) At t =0
the cylinder is placed in mechanical contact
—AP with a new reservoir at temperature 7" and

(b) T,P—AP

AT<0O -AP

AS(0%)=0

pressure P-AP. A short time afterward, at
t=0%, the gas within the cylinder has
reached a state of internal thermodynamic
> equilibrium. (c) After a long time (t — )

AS(e0)

t=0* L

AS=0 AV(0%)

AT(0%)

T,P—AP

(c)

AT=0  —AP

t—o0o S

AS>0 AV(eo)
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AT(00)=0 the temperature difference has increased the
entropy and volume of the cylinder, which is
now in equilibrium with its surroundings
with 47 =0, — 4P #0. (d) The differences
between the four thermodynamic variables
and their initial (¢ < 0) values are shown as a
function of time.
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AV: AV (t=0%)>0because AP <0. As t— w0, the volume
will further increase as the gas within the cylinder
warms up at constant pressure.

The four responses —AP(t), AS(t), AT(t), AV (t) to the

perturbation have been shown schematically in Fig. 4(d).

Le Chatelier’s principle for the experiment is

AV(w)>AV(0%)>0 (—AP>0). (2a')

Expressed in terms of thermodynamic partial derivatives
(AP of either sign), it is

(aV) (8V)
i —{2X) S0
dP/r dPJ/s

Comparison

These two experiments, involving perturbatlon of inten-
sive thermodynamic variables, can be compared in exactly
the same way as were the two experiments (involving exten-
sive variables) discussed in Sec. II. The five comparisons
discussed for extensive variables (end of Sec. II) are valid
for intensive variables, provided the following word
changes are made:

extensive — intensive
diminish — increase

Another fruitful comparison can be made. This involves
comparison of the experiment involving perturbation of §
with that involving T (experiments 1 of Sec. Il and 1’ of
Sec. III). If the vertical scale of the graph in Fig. 1(d) is
stretched by a scale factor depending on time in such a way
that AT (¢ )is horizontal, then AS (¢ ) willincrease in time. In
fact, this scaling transforms Fig. 1(d) into Fig. 3(d). Figure
2(d) can be transformed into Fig. 4(d) by a similar scale
transformation. In this way, we easily see that a long-term
decrease in an intensive thermodynamic variable for fixed
value of its conjugate extensive variable [Fig. 1(d), Fig. 2{d)]
is intimately related to a long-term increase in an extensive
thermodynamic variable for fixed value of its conjugate
intensive variable [Fig. 3(d), Fig. 4(d)]. These are the two
faces of Le Chételier’s principle seen by Ehrenfest.

(2b')

IV. FORMULATION OF THE GENERAL
THERMODYNAMIC PRINCIPLE

In this section we present a unified and generalized for-
mulation of Le Chatelier’s principle (subsection D). To do
this, we first introduce a useful notation {A) and discuss
perturbations of extensive (B) and intensive (C) thermody-
namic variables. The properties of the Le Chételier pertur-
bation-response matrix, introduced in (D) are then listed
(E)-and the connection with Le Chételier’s principle estab-
lished (F).

A. Notation®

We consider a system initially in thermodynamic equi-
librium with its surroundings. The system state is described
by the values of its extensive thermodynamic variables E *
(e.g., S, ¥, N;, ...). The system’s intensive thermodynamic
variables i, (e.g., T, — P, u;,...) are equal to the corre-
sponding intensive variables of the surrounding reservoir.
The intensive thermodynamic variable i, is conjugate to
the extensive variable E

--(22),
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Here U = U(E °) is the internal energy of the system and
the subscript £ means that all other extensive variables
have been held constant. A small change 8E # in the exten-
sive variables will produce a small change in the intensive
variables:

i, =Y U, 6E?, (4a)
B .
(), (%), -(22)
@ \GE“9E? Jx  \OEP/): \JE*/:
By -1
-(%-) (@0)
di, /&
The relationship (4a) can be inverted
= > U 5ig, (5a)
B
a B ; -1
Ua/a:(_aE ) - (3‘? ) =(a’ﬂ) . (5b)
dig /; adi, /; dE= /;

The matrices [U,;],[U* ] may conveniently be consid-
ered as susceptibility tensors. They are real, symmetric,
inverses of each other, positive definite, and have positive
diagonal matrix elements:

UaB = Uﬁa’ U = UBG; (63.)
ZUaB Usr =57, (6b)
U,>0, U*>0. (6¢)

In order to set the stage for a unified formulation of Le
Chitelier’s principle, we must first consider responses of a
system to perturbations of extensive and intensive varia-
bles. This is done in the following two subsections.

B. Perturbation of an extensive variable

We make the following assumptions®:

(1) At time ¢ = 0, one of the system’s extensive variables
(primary extensive variable) is perturbed (4E“50) and
held fixed for > 0.

(2) A short time afterward (z=0%) the system has
reached a state of internal thermodynamic equilibrium, so
that the susceptibility relations (4a) and (5a) are valid. In
this time interval the remaining (secondary) extensive var-
iables E” (B #a) have not had a chance yet to change.

(3) The only -constraint imposed on the system is that
which keeps AE “ fixed for ¢> 0. This constraint also pre-
vents i, from returning to its initial equilibrium value.

(4) The generalized (secondary) forces 4, will drive the
system to a new constrained equlhbrlum state in which
Aiz =0 (B #a)and AE*? #0.

The near-term (r = 0*) responses of the thermodynamic
variables are

AE0*)=AE®°, (7a)
AE®?(0%)=0, B #a, {7b)
Aia(0+)=(al )AE“‘—-U AE®, (7¢)
JE“
di
A4iz(0*) = _’*) AE*=U, AE“.
ig(0™) (aEa A b (7d)

The long-term (— o) responses of the thermodynamic
variables are
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AE“(a) = AE*, (8a)

AEP(w) = (% )'AE"‘ — (UP*/UAE ", (8b)
Ai ()= (;i“a )AAE"‘ — (I/UAE ", (8¢]
diy(0)=0, B+#a. (8d)

C. Perturbation of an intensive variable

We make the following assumptions:

(1) At time # = O one of the system’s intensive variables
(primary intensive variable) is perturbed (4i, #0) and held
fixed for ¢ > 0.

(2) A short time afterward (r=07%) the system has
réached a state of internal thermodynamic equilibrium. In
this time interval, the secondary extensive variables
E#(B #a) have not yet had a chance to change.

(3) The secondary forces 4i, will drive the system to a
new equilibrium state in which 4i; =0 (8 #a) and
AE*® #£0.

The near-term responses of the thermodynamic varia-
bles are

A6 (0+) = 4i,, (9a)
4iy(0+) = (gi) i, = Uy /U, )Ai, (9b)
AE“(0*) = (‘9’? a) Ai, = (1/U,,)Ai,, (9]

AEF(0%) =0, B #a. (9d)

The long-term responses of the thermodynamic variables
are

Ai (o) = Ai,, (10a)
Aig(w) =0, B #a, (10b)
AE (o) = (‘;E.a ) 4i, = U*=4i,, (10c)
AEﬁ(oo)z(alf“ﬂ)Aia — UP4i,. (10d)

D. Le Chitelier perturbation-response matrix

Since Aig(0) = 0and AE?(0*) =0 (B #a), it is useful
to compare the product of secondary variables 4i5(0™)
AE?(w), which has the dimensions of energy, with the
product 4i, (o )JAE *(0™) of primary variables. This com-
parison defines a dimensionless constant of proportional-
ity, Lg,, as follows:

Aig(0T)AEP (o) = Ly, i, (0)AE *0F). (11)
The value of the constant L, can be derived from Egs. (7)
and (8) when the extensive variable is perturbed (4E > 0)
or from Egs. (9) and (10) when the intensive variable is per-
turbed {47, > 0). In either case we find

Ly, = Ug, UP (12)

The set of n* coefficients L, (for a system with n degrees of
freedom) can be written in matrix form. The perturbation-
response matrix [Lg, ] is called the Le Chitelier matrix.
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E. Properties of the Le Chitelier matrix

(1) It is dimensionless because each matrix element is the
ratio of two energies.

(2) It is symmetric because the susceptibility tensors
[U.s], LU ] are symmetric [cf. Eq. (6a)]:

Ly=UgU®=UgUP=Lg,. (13a)

(3) It is positive definite because the susceptibility tensors
[U.s], [U], are positive definite.

(4) The sum of the elements of any row or column is equal
to unity:

SLy, = SUp UP*=SU U =63 =1.
8 ] B

(5) The diagonal matrix elements all exceed unity. This
follows most easily by applying the Schwartz or Bessel in-
equality to the metric geometry of thermodynamics.®'°
The result is U,, >(1/U**) or

L,=U,U*>1, (13¢)

The inequality holds unless [ U,z ] or [U*#] is diagonal.

(13b)

F. Le Chitelier’s principle

The dual cases of Le Chételier’s principle studied by Eh-
renfest are simultaneously contained in the diagonal ele-
ments L, of the Le Chatelier matrix

AL (0T)AE?()

aa T (14)
Ai (0)AE07)
Case I: If the extensive variable is perturbed,
AE°%0") = AE *(«) and Eq. (14) reduces to
A4i, (0%)/Ai (o) =Ly, > 1 (15a)
or
di as
( C ) > ( o ) >0. (15b)
JE* JE dE*° J;

Case 2: If the intensive variable is perturbed, 4/, (0%) =
4i, () and Eq. (14) reduces to

AE*0)/AE“(0*)=L,, > 1

or

(é?E") >(8E“) -0
3, /, i, Jg

Returning now to the two sources of confusion sur-
rounding this principle, we may now state Le Chételier’s
principle as follows:

(1) When a system is perturbed, it initially (after internal
equilibrium is reached, before secondary forces have acted)
responds in the direction of the perturbation. The respond-
ing variable is conjugate to the perturbed variable.

(2) Secondary forces subsequently act to “‘oppose” (ex-
tensive variable perturbed, intensive variable responding)
or “relieve” (extensive variable responding)} the perturba-
tion.

Part (1) of this statement is essentially Newton’s second
law applied to generalized forces and displacements. Part
(2) states the two cases of Le Chatelier’s principle discerned
by Ehrenfest.

V. THERMODYNAMIC EXAMPLE

For the simple single-component fluid considered in the
examples of Secs. II and III, the susceptibility tensor

(16a)

(16b)
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[U.s] andits inverse [U 2] are described in terms of the
six standard linear response functions:

CV_—‘T(QS-) » CP=T(£>y
Vv P

aoT aT
__ 1 i‘i) - _I_(ﬂ) 17
bs = V(aP s br v\ép )+’ 17
r-1(£) - L),
P /v V\IoT /p
T _ T
Cy r,
[Uaﬁ]= __l 1 4
ry VBs
C
P Vap
(U*1=| T (18)
Va, VBr
The Le Chitelier matrix for this fluid is
Cr TVa,
Cy r,
Lg]= 19
[ ﬂ'] B TVap E_T_'_ ( )
r, Bs

The property L, > 1 of the Le Chatelier matrix leads im-
mediately to the inequalities
Co/Cy>1 or Cp>Cp,>0,
(20)
Br/Bs>1 or Br>Bs>0.
The property that all row and column sums are -+ 1 leads
to the equalities
C, TVa,
r,

o
From the last result we immediately see that

Cp/Cy = B+/Bs. In fact, the Le Chatelier matrix (19) is
completely determined by one number ( — TVa, /Iy ), giv-
en its properties (Sec. IV. E).

The Le Chatelier matrix provides a deep understanding

_ B _

=1

L2 (21)

of the four experiments discussed in Secs. II and III, and
the relations which exist among them. Relations exist
among both direct and indirect responses. Table I summar-
izes these four experiments, the variable which is per-
turbed, and the response ratios for both direct and indirect
responses.

We see from this table that the direct response ratios for
examples 1 and 2 are equal (C,./C, = B5/8r < 1) and less
than unity, while the direct response ratios for examples 1’
and 2’ are their reciprocals. We also see that all four indi-
rect (reciprocal) response ratios are equal ( — TVe,/I'y).
Finally, in view of the equality (21) obtained from the prop-
erty of [Lg, ] that all row and column sums are + 1, we
observe that any single indirect response ratio is sufficient
to determine the remaining seven response ratios in this
table.

VI. FORMULATION OF LE CHATELIER’S
PRINCIPLE FOR MECHANICAL SYSTEMS

We consider now a mechanical system which can be de-
scribed by n generalized coordinates (displacements) X !,
X2, ..., X" The potential energy of this system is described
by a function U = U (X*). The generalized forces f, conju-
gate to the generalized displacements X ® are defined by

au
f a =
axe
If the generalized displacements are changed slightly

(X# — X# 4+ 5X*)the generalized forces are also changed
slightly (f, — f, + &f,), where
FU
8,=—-3S—=0Xx= - U, 6X~
4 2 3 Ve

At an equilibrium, U, = 0. If the equilibrium is stable,
[ U.g] is positive definite:
U,=0

[U.s] positive definite

=_-U,. (22a)

(22b)

(equilibrium condition) (23a)
(23b)

At an equilibrium, the change in potential energy due to
a displacement 86X from equilibrium is, to lowest nonvan-
ishing order

(stability condition).

Table I. Comparison of the direct and indirect responses of the thermodynamic variables for the four examples considered in Secs. II and I11.

Type of Experiment
Section response number Perturbation Response ratio
II Direct | a8 AT (0 )/AT{0%)=C,/Cp <1
2 ’ av AP(0)/AP(0F)=Bs/Br <1
. TVa,
Indirect 1 a8 — AP0V (w) = — AT (x)AS
v
TV
2 AV AT(0)AS (o) = — —?a—'i[——AP(ao)]AV
Vv
1 Direct 1 AT A8 (0)/AS(0Y)=Cp/Cy > 1
2 — 4P AV {e)/AV(0*)=Br/Bs>1
. , TVa,
Indirect 1 AT — AP0V AV (w)= — r ATAS (0+)
v
TV
2 —4ap AT(0")AS(o0) = — F“P(—AP)AV(N)
v
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U= ;%Uaﬂ 8X“6XP = — | Yof, 6X“

=} z U*Sf, 8f 5. (24)
a, B
The matrices [U,;], [U %] are inverses. They are real,
symmetric, and, if the system is stable, positive definite.
A mechanical system at equilibrium may be perturbed
by suddenly changing one of its variables (primary vari-
able), and holding the perturbation constant for all future
times. The perturbed primary variable may be either exten-
sive (AX “0) or intensive (Af, #0). In either case, the
secondary displacements AX? will initially be small be-
cause of the inertia associated with extensive variables
[4X%(0%)~0, B #a]. The nonzero secondary forces
Af ; will drive the system to a new constrained equilibrium
in which they vanish [4f;(«)=0, B #a]. The initial
(t=0%) and final (—>oo) responses of the generalized
forces and displacements can be determined by making the
identifications ( — f,, X %) «(i,, E ) and following the ar-
guments of Sec. IV, There results the following perturba-
tion-response relation:

Af g(07)AXP (o) = Ly, Af o (0)AX %(07), (25)
where
Ly, =Ug U Ba, 1 (26)

The matrix [Lg, ] has the properties described in Sec.
IV.E.

For many mechanical systems, the stability matrix
[ Ug. ] obeys the condition Ug, <0 (8 #a). Under these
conditions, the Le Chételier response matrix possesses an
additional set of properties. These properties are summar-
ized in the Appendix. '

Toillustrate Le Chételier’s principle for mechanical sys-
tems, we consider the simple mass—spring system shown in
Fig. 5(a). We assume that the masses are large (see below)
and the springs are slightly damped. The potential energy
function can be expressed in terms of the generalized dis-
placements X ', X %, X ? from unconstrained equilibrium in
both standard and matrix form:

U(XI,XZ,X3)
=%k(X1)2+%k(Xl __X2)2 +%k(X2 ~X3)2+%k(X3)2
(27a)
2k —k 01/x!
=X X% X% —k 2k —k|1Xx? (27Y)
0 —k 2k | \x?
The generalized forces conjugate to the displacements are
-5
ax!
f} a
fal=— X UXx,x% X3
’ 2
| ax? ]
[ 2k —k o 1[x!
=—|—k 2k —kljXx?| (28)
| O —k 2k Jlx3]

The inverse of the positive-definite matrix appearing in
Egs. (27b) and (28) is
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RESPONSES

2

(d X
-afy(0%)

ax! (@) = ax3(w)
ZX (0t =0 -afz(=) .

ax3(0*)=0 =

-af{w) =-sfg(w) =0

“aty(0*)z —aty(0%)

Fig. 5. (a) For # <0 the mass—spring system is in static equilibrium. All
masses are equal, as are all spring constants. (b) At # = 0 the middle mass
m, is suddenly displaced by AX ?, creating nonzero forces on all masses but
no displacements of m,, m; at t =07 (c) After a long time ( — ) the
system has reached a new constrained equilibrium in which
4f, = 4f; =0, 4f,#0. (d) The three displacements 4X“ and forces
— Af, areshown as a function of time. We have plotted — 4/, instead of
+ 4f, for two reasons: (i) dU/3X*= — f, and (ii) to emphasize the
close similarity with the thermodynamic cases [Figs. 1(d), 2(d}].

2k —k 0o |! . 3 2 1
0 —k 2% 11 2 3

The Le Chételier matrix associated with this mechanical
system is therefore

372 —1/2 0
[L]1=]—-1/2 2 —172]. (30)
0 —172 372

The matrix is dimensionless, real, symmetric, and positive
definite. The diagonal matrix elements exceed + 1, the off-
diagonal matrix elements are nonpositive, and the sum of
the elements in any row or column is + 1.

VII. PERTURBATION OF AN EXTENSIVE
VARIABLE: A MECHANICAL EXAMPLE

To see how the Le Chitelier matrix {30) is related to
physical processes induced by perturbation of an extensive
variable, we consider a displacement of mass m, from its
unconstrained equilibrium position. This displacement
AX?s£0 must be carried out on a time scale much shorter

than Vm/k . The conditions at £ = 0" are [cf. Fig. 5(b)]
AX'=A4X>=0and
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4f, 2 -1 0 0
t=0% |4Af,|=~k|—1 2 —1||ax?
4f, 0 -1 2 0
+ kAX?
= | —2kAXx?|. (31)
+ kAX?

After the oscillations have damped out (t — o) the condi-
tions are [cf. Fig. 5(c)] 4f, = A4f, = 0, AX ? = constant and

AX! 3 2 1][07
t— o |ax?| = = L|2 4 2|4
AX? %11 2 3]l o
24f,/4k JAX? ]

= _|aagrsak | = | axz|. 2
2Af,/4k 147 |

From Egs. (31) and (32) we easily compute

Afy(0)AX? = (—kAX?)(4X?) (33a)
and
Af0T)AX Ywo) = (+ kAX?)(JAX?) L= —},
Af07)AX (o) = (— 2kAX*)AX?) Lyp= +2, (33b)

Af07)AX ¥ (w) = (+ kAXHBAX?Y) Ly= —4

The time evolution of the generalized displacements and
forces is indicated schematically in Fig. 5(d). The oscilla-
tions in £}, /5, /5, X ', X * have been averaged over, assuming
the decay time is sufficiently longer than the normal mode
periods, and only the mean values of the forces and dis-
placements have been shown. The initial response of the
force Af,(0*) = — 2kAX ? conjugate to the perturbed vari-
able AX? is twice the long-term response
Afy(w) = — kAX? or Af,(01)/Af5(e0) =Ly = 2.

In this experiment when the middle mass is displaced to
the right, a large restoring force Af, will act toward the left
on it. If its position is held fixed, this force will be dimin-
ished by the motion of the two satellite masses toward the
right. The external force F,,, required to hold m, fixed with
Af,50 will be diminished by the motion of the satellite
masses since F,,, + 4f, = 0 when m, is unaccelerated (at
t=0%andt— ).

VIIL. PERTURBATION OF AN INTENSIVE
VARIABLE: A MECHANICAL EXAMPLE

To see how the Le Chatelier matrix {30) is related to
physical processes induced by perturbation of an intensive
variable, we apply a constant external force F,,, to the mid-
dle mass [Fig. 6(a)]. We will assume that m, is much less
than the satellite masses m,, m,. An alternative assumption
can be made that the masses m,, m, are constrained in their
original positions until m, has reached a new equilibrium
position under F,,, %0, and then are released. Either of
these assumptions is sufficient to establish a clean separa-
tion of the time scales on which the responses to perturba-
tion take place.

These responses can be computed using the matrix rela-
tions given in Sec. VII. The results are
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(a) X'=0 X2=0 X3=0
K Kk k

<0 k
my mg mg
(1=0 f2=° f3=°
(b) AX'=0 AX? AX3=0
t=0*
— ——> —
Af, Af, Ex' Afy
AX#Q AX2  AX3#O
(c) X ez

t-»00 =4
2 ——
f,=0 Af, F_ §,=0

ext

RESPONSES

I AX2(00)
(d) 2 X2(0%) AX1(o0)=AX3(00)
AX3(0*)=0 —Af,=F
\' AX(0*)=0

oxt
—~Af,(0*)=—2¢;(0")

t
—Af,(00)=—Af;(0)=0

Fig. 6. (a) For ¢ < 0 the mass—spring system is in static equilibrium. (b) At
t =0, a constant external force F,,, is applied to the middle mass m,. If
m,<m,, m,, then m, has moved to a new quasi equilibrium position before
either of the other masses have moved (f = 0*). If the mass inequality is
not satisfied, the masses m,, m, may be held in place until 7, has reached
an equilibrium position ("z =0%"). (c) After a long time (t — «) the
masses m,, m; move to the right, allowing m, to move further to the right
under the action of the constant external force F,, . (d) The displacements
AX *and forces — Af, are shown as a function of time. During the inter-
val 0* <7 < « while m, is almost unaccelerated, the external force F,,

and the spring force 4/, on m, sum approximately to zero: F,,, + Af,==0.

Afy =1F,, , 4X'=0
1
t=0": Af,= —F,,, AX?= +?k—F°x'
Afy = o AxX*=0
_ (34)
These responses are illustrated in Fig. 6(b).
1
A.fl’_-'oy AXI:‘"zIcht
t— o Af,= —F.,,, 4X*= —2—Fext (35)
2k
1
Afs=0, AX3=—2;5,“.

These responses are illustrated in Fig. 6(c). From Eqs. (34)
and (35) we easily compute

ALAX*0") = (— Fo)(1/2kF,,,) (36)
and

Af\(07)AX Y(o0) = (1/2F o J(1/2kF ) L1y = —},

Af0)AX Y 0) = ( — Fout(2/2kF ) Loy = +2,

Af01)AX (o) = (1/2F o )(1/2kF ) L3y = — 4

The time evolution of the generalized displacements and
forces is indicated schematically (neglecting oscillations) in
Fig. 6(d).

In both these experiments, the middle mass is displaced
to the right by an external force F,,,. Initially, the satellite
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masses remain undisplaced {t =07), but the secondary
forces which are generated by the changed position of the
middle mass act on the satellite masses and move them to
new equilibrium positions: In one case (Sec. VII) the posi-
tion of the middle mass remains fixed, and motion of the
remaining masses reduces the external force required to
hold the middle mass in place. In the other case (this sec-
tion) the external force F,, on the middle mass
(F.. + Af; = 0when m, is unaccelerated) is held constant.
When the constraints holding the satellite masses in place
are relaxed (e.g., by the passage of time, if m,<m,, m,<m,),
these masses also move to the right, allowing the middle
mass to move even further to the right. The experiments are
in a sense dual, and the ratios of final to initial responses are
reciprocals. For the case AX?=const, Afy(w)/
4£,(0%)=1/2 while for the case F,, = Af, = const,
AX(0)/AX3}0)=2.

IX. CONCLUDING REMARKS

Le Chatelier’s principle has three main ingredients.

(1) A system is in static or dynamic equilibrium, and this
equilibrium is stable. Small displacements of the system
from equilibrium are returned to equilibrium by nonzero
restoring forces which are usually (but not necessarily) as-
sumed to be linear functions of the displacement [cf. Egs.
(4) and (22)}.

(2) Constraints are imposed on the system after it is dis-
placed from equilibrium. These constraints prevent the
system from returning to the original unperturbed equilib-
rium configuration. As each constraint is removed, the sys-
tem can approach closer to the original equilibrium.

(3) There is a dynamic response of the system to pertur-
bation. The dynamic response involves two or more char-
acteristic time scales. The characteristic times are widely
separated.

Samuelson' gives a careful discussion of the response of a
general locally stable system to a perturbation, and the ap-
proach to equilibrium as constraints are successively re-
moved. His work presents a careful discussion of the first
two ingredients, but is entirely devoid of dynamical consid-
erations.

Formulations of Le Chételier’s principle in the literature
of thermodynamics involve transitive verbs either explicit-
ly or implicitly. The dynamical ingredient is therefore gen-
erally recognized, even if the separation of time scales and
role of constraints is less well understood. It is, however,
recognized that Le Chatelier’s principle is a static, rather
than dynamic, principle.’*®>® We have suggested
throughout that the physical parameters (massive pistons
in Secs. IT and III, relative size of k;, m, in Secs. VII and
VIII) which govern the dynamical properties of these sys-
tems are such that a clear separation of time scales occurs.
If this is not the case, as implied in Fig. 6, the Le Chitelier
matrix can be used to describe the system as it undergoes a
relaxation of constraints, from AX? =0to 4f?=0.

The ingredients of Le Chatelier’s principle are rather
general, and can be found in many fields. These include the
thermodynamics of equilibrium and nonequilibrium pro-
cesses alike, mechanical systems in static and dynamic
equilibrium, passive multiport electrical networks involv-
ing resistors, capacitors, and inductors (Lenz’s law), eco-
nomic models of input-output and general equilibrium
type, feedback and control systems of both linear and non-
linear type, and in all probability, biological, social, and
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political models as well. In all such systems the diagonal
matrix elements

L., =4f,07)4X%w)/4f,(0)AX*07)

describe the direct responses of the system to perturbation.
These matrix elements include the dual cases first dis-
cussed by Ehrenfest:

Lo =4Af,(07)/Af () >1
if AX ¢ is fixed, or
L,, =A4X%w0)/AX0%)>1

if Af, is fixed. The off-diagonal matrix elements describe
the indirect responses. If the system is described by a poten-
tial, L,z = Ly, and reciprocal relations between the pri-
mary and secondary variables hold. In such cases (thermo-
dynamics, mechanics) the Le Chitelier matrix describes
two kinds of reciprocal relations:

(1) The response ratios Af,{«)/Af,(0") and
AX %(0)/AX *(0*) for the dual cases described by Ehren-
fest are reciprocals of each other.

(2) The response ratio of secondary to primary variables
Af5(01)AX P (0)/Af ,(0)AX *0™) is unchanged under
the reversal of roles: primary <> secondary.

A precise qualitative statement of Le Chatelier’s princi-
ple which avoids the confusions described in Sec. I is

(1) When a small external force is applied to a system in
locally stable equilibrium, the system is initially displaced
in the direction of the applied force.

(2) After the secondary forces generated by the perturba-
tion have established a new equilibrium, (a) the external
force is reduced if the displacement is held constant or (b)
the displacement is increased if the external force is held
constant.

APPENDIX

In many types of systems it happens that the stability
matrix [U,,]=[8°U/dX“3X"] is positive definite
with respect to a natural coordinate system X ¢, and that all
off-diagonal matrix elements are nonpositive. When this is
the case, its inverse [U*?] is positive definite and all its
matrix elements are non-negative:

Uaﬁ = Uﬁa s Uaa > 0; Uaﬁ <O; a #B’
U*=UP, U*>0, U0, a#B.

For such systems the Le Chitelier response matrix
L,z = U,z U has the properties:

L,z =Lg,, (Al)
L.>1, (A2)
L;<0 a#pB, (A3)
zLaﬁ =1= ZLaﬁ' (A4)
a B

This last expression can be written

S — Ly =L, — 130 (A4)
B

B#a
Since — Lg, >0 when S8 #a by Eq. (A3), if the sum in Eq.
(A4') extends over some, but not all, values of 8 #a (indi-
cated by a prime in the summation below) the following
inequalities are obtained:
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0< Y —Lg <Ly — 1.
B

B+a

For systems in thermodynamic equilibrium, the off-di-
agonal matrix elements of the stability matrix [ U,z ] are
not constrained in sign. For very many thermodynamic
systems, the matrix elements U,; and U (@58) do have
opposite signs. The second law of thermodynamics re-
quires the inequalities (A2) but not the inequalities (A3). If
inequalities of the form (A3) or (A5) were found to be uni-
versally satisfied by systems in thermodynamic equilibri-
-um with respect to the natural thermodynamic variables,
our understanding of the second law of thermodynamics
would have to be sharpened.
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An N th-order linear ordinary differential equation is rewritten as a first-order equation in an
N X N matrix. Taking advantage of the matrix manipulation strength of the APL language this
equation is then solved directly, yielding a great simplification over the standard procedure of
solving N coupled first-order scalar equations. This eases programming and results in a more
intuitive algorithm. Example applications of a program using the technique are given from

quantum mechanics and control theory.

INTRODUCTION

A task of a physics student, and that of a physicist in
general, frequently leads to a differential equation. Some
intuition about the nature of its solution is invariably very
helpful. Working interactively with a computer that gener-
ates solutions and provides graphical output is an excellent
way to deveélop such intuition. This note reports on a great
simplification possible for high-order linear differential
equations taking advantage of the matrix manipulation ca-
pabilities of the APL computer language. The matrix ma-
nipulation flexibility of APL allows an N th-order linear
ordinary differential equation to be solved numerically in
terms of a single first-order equation in an N X N matrix,
instead of the standard system of NV first-order scalar equa-
tions. This greatly simplifies programming and results in
more intuitively understandable algorithm. A program im-
plementing this technique is described below, and exam-
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ples are given from quantum mechanics and control the-
ory.

MATRIX FORMULATION
The general form of the problem is
d®™z dz
Apt)—= + -+« +A,(t)— +A,t)z=F(t), 1
) 2 ()2 +Adt=F), (1)

with initial conditions
¥~z _ dz
V-1 t=1, dt li=y,

=K, 2(t;)) =K,

(2)

The standard method for numerically solving such an
N th-order initial-value problem entails converting it ot the
system of ¥V first-order equations
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