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This article starts with a brief history and idea interpretation of the Density Functional 

Theory (DFT), and then explains more detailedly about the original thought of 

Hohenberg and Kohn and their first and second theorem of the DFT. Next, it also 

introduces a methodology to treat the calculation based on DFT, which is the 

Kohn-Sham method based on the Local Density Approximation (LDA) treatment for the 

exchange energy term. In the later part, this paper touches two examples, as an 

illustration of how to get the density distribution n(r) from the Hohenberg-Kohn energy 

FHK, and from this part it shows the derivation in a combination of DFT with the 

statistical mechanics. 

 

I. What is Density Functional Theory 

  In 1927, Hartree introduced a procedure to calculate 

approximate wavefunctions and energies for atoms and 

ions, and this is called the Hartree function. Some 

years later, to overcome the totally no-consideration of 

the anti-symmetry of the electron system, his students 

Fock and Slater, individually, proposed a 

self-consistent function with consideration of Pauli 

principles, and the multi-electron wavefunction in the 

form of a determinant of one-particle orbitals  

(Slater-determinant). The calculation of Hartree-Fock 

model is so complicated, so it was not popular until 

1950s. However, the spirit of Hartree-Fock model 

consider what the result will be get is only an 

approximation to the real result. 

  In the same year 1927 as the Hartree function was 

proposed, Thomas and Fermi proposed a statistical 

model to compute the energy of atoms by approximate 

the distribution of electrons in an atom. They 

expressed the kinetic energy of an atom by the 

functional of electron density, and add two classic 

terms of nuclear-electron and electron-electron 

interactions (both of which can be represented in terms 

of electron density) to compute the atom energy. At 

first it didn‟t contain the exchange energy of an atom, 

which is a conclusion of Pauli principle and is stated in 

Hartree-Fock theory, and in 1928 Dirac add an 

exchange energy functional term
 [1]

. 

  Although the Thomas-Fermi model is an important 

first step, its applications are very limited currently 

because it is inaccurate for most of them: the largest 

source of error is because the representation of the 

kinetic energy functional term is just an approximation; 

then the error is in the exchange energy, and is because 

of the complete neglect of electron correlation effect. 

But, anyway, it serves as a predecessor of the Density 

Functional Theory (DFT). 

In 1964, Hohenberg and Kohn published a paper, 

and thus made the foundation of the DFT mansion firm. 

The core spirit of DFT is to substitute the complicated 

and thus hard-to-compute many-electron wavefunction, 

which contains 3N variables (N is the number of 

electrons, and each electron has 3 spatial variables), 

with the functional (functional is the function of 

another function, which map a number to a function) 

of electron density, which contains only 3 variables. So 

in the new system, we don‟t need to be worried about 

the huge amount of 3N variables, instead, we only deal 

with 3 variables, which is far easier to handle.       

Hohenberg and Kohn proposed their first theorem, 

which points out the ground state energy is uniquely 

depends on the electron density, which mean it is a 

functional of electron density. Their second theorem 

proved that by minimizing the energy of the system 

according to the electron density, ground state energy 

can be obtained. 

Which must be agreed is that H-K theorems only 

provide the truth that there exists one-to-one mapping 

relations between electron density functional and 

system properties, but they don‟t give any what exactly 



these relations are. So what most general used methods, 

instead of the „minimizing the system energy‟, is the 

Kohn-Sham method. Kohn and Sham published a 

paper in 1965, only one year later than the publishing 

of Hohenberg and Kohn‟s important paper, and in this 

paper they simplif ied the multi-electron problem into a 

problem of non-interaction electrons in an effective 

potential. This potential includes the external potential 

and the effects of the Coulomb interactions between 

the electrons, e.g., the exchange and correlation 

interactions. Dealing the exchange and correlation 

interaction is the difficulty within KS-DFT. So far, 

there still doesn‟t exist a rigorous way to solve the 

exchange and correlation energy. However, the 

simplest approximation is the Local-Density 

Approximation (LDA). LDA is based upon using the 

uniform electron gas model to get the exchange energy 

(which exact value can be get from the Thomas-Fermi 

model), and to get the correlation energy from fits to 

the uniform electron gas
 [1]

. By transforming the 

problem into the non-interacting system in an effective 

potential, wavefunction can be easily represented by a 

Slater determinant of orbitals, the kinetic energy 

functional of this system is exactly known. But the 

exchange-correlation part of the total energy functional 

remains unknown. 

DFT has become very popular for calculations in 

solid state physics since 1970s. Compare to other 

methods dealing with the quantum mechanical 

multi-body problems, LDA give satisfactory results 

with experimental data. But in quantum Chemistry 

area, DFT was still not accurate until 1990s, when the 

approximation methods were greatly refined to better 

model the exchange-correlation interaction. DFT is 

now a leading method for electronic structure 

calculations in many areas. However, it‟s still difficult 

to use DFT to treat the strongly correlated systems, 

band gap in semiconductors, and strong dispersion 

systems. So the development of DFT is going on
 [1]

. 

 

II. H-K Theorems and K-S Method 

1. The First H-K Theorem 

Hohenberg and Kohn showed in their first theorem 

that the ground state properties of a many-electron 

system are uniquely determined by an electron density 

that depends on only 3 spatial coordinates (r has 3 

variables). They derived their first theorem in the 

following way: consider a collection of an arbitrary 

number of electrons, enclosed in a large box and 

moving under an external potential v(r) and the mutual 

Coulomb repuls ion
 [2]

. The Hamiltonian has the form 

H T V U                  (1) 

Where 

1
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which T is the N-electron kinetic energy, V is the 

N-electron potential energy from the external field, and 

U is the electron-electron interaction energy. Here they 

only deal with the system which ground state is 

nondegenerate. If there is a magnetic field and thus the 

states are degenerated, it requires Time Depend DFT to 

deal with it.  

Then note the electron density in the ground state 

  by 

( ) ( , *( ) ( ) )n r r r               (5) 

Now the logic is: from the expression above, n(r) is 

clearly a functional of v(r), because wavefunction 

( )r  can be decided by v(r). If it can be proved that 

v(r) is a unique functional of n(r), and because v(r) can 

give ( )r , can fixes H, then if provided n(r), all the 

properties of ground state are unique functionals of 

n(r). 

Assume another potential v‟(r), with ground state 

'  can give the same density n(r). '  and   

can‟t be equal to each other because they satisfy 

different Shrödinger equations, so they have different 

Hamiltonians H and H‟, and different ground state 

energies E and E‟
 [2]

, and they must meet 

' ( ', ' ') ( , ' ) ( ,( ' ) )E H H H V V          



so that 

' [ '( ) ( )] ( )E E v r v r n r dr             (6) 

Simply interchange the primed and unprimed 

quantities and do the same calculation again can get 

' [ ( ) '( )] ( )E E v r v r n r dr             (7) 

add (6) and (7) can get  

' 'E E E E                    (8) 

which can only be true when E=E‟. So by this it means 

there cannot be '( )v r  comes from the same n(r), so 

this proves that ( )v r  is a unique functional on n(r), 

and thus proves that the full many-particle ground state 

is a unique functional of n(r). 

 

2. The Second H-K Theorem 

In their second theorem, Hohenberg and Kohn 

defines an energy functional in terms of the electron 

density for the system, and further proves that by 

taking the minimum of the energy functional according 

to the electron density, ground state energy can be 

found. 

As said above, now all the properties of the ground 

state are the functionals of electron density, so define 

[ ( )] ( ,( ) )F n r T U               (9) 

here F[n] is a universal functional and is valid for any 

number of particles and any external potential (while if  

it inc ludes V, then it‟s not universal because V depends  

on the system)
[2]

. Then given an external potential v(r), 

define 

[ ] ( ) ( ) [ ]vE n v r n r dr F n       (10) 

for the correct n(r), this is the ground state energy E. 

Then the logic is, the ground state electron density n(r) 

will give the minimal value to this functional, and all 

other electron density will not give the energy larger 

than the ground state energy. 

By doing this, first there should be an restrict 

condition 

[ ] ( )N n n r dr N            (10) 

This is obviously true because the number of electrons 

in the system is constant N
 [2]

.  

From (1), it‟s easy to get for a system ' , the 

energy functional is 

[ '] ( ', ') ( ', ( ) ')v V T U           (12) 

It has a minimum at the correct ground state  , and 

all other state '  other than the ground state will 

provide the larger value. Let '  be the ground state 

of the system with a different external potential v‟(r), 

using (12), and substitute (9) into the later part of (12), 

can get 

[ '] ( ) '( ) [ ']v v r n r dr F n     

[ ] ( ) ( ) [ ]v v r n r dr F n       (13) 

remember here   denotes the ground state with 

external potential v(r), and '  is other state  which 

now is set to represent the ground state with external 

potential v‟(r). And we are only interested in v(r), not 

v‟(r). Now the point is proved. 

It‟s very complicated to find a proper expression of 

F[n], but once it is found, plugging it into (10), taking 

the derivative of it to find the minimal value of the 

functional, and then we get the ground state energy. 

But usually, the KS-DFT is a better way. 

 

3. Kohn-Sham Method and the Local Density 

Approximation (LDA) 

In another way, (10) can be written into  

1 ( ) ( ')
( ) ( ) ' [ ]

2 | ' |

n r n r
E v r n r dr drdr G n

r r
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                                       

(13) 

where G[n] is a universal functional of the density, and 

as in section II, this expression is a minimum for the 

correct density function n(r). G[n] could be written into 

the sum of two parts 

[ ] [ ] [ ]s xcG n T n E n          (14) 

where Ts is the kinetic energy of this noninteracting 

electrons system, and Exc is the exchange and 

correlation energy of an interacting system with 

density n(r). If n(r) is sufficiently slow changing, then 



( ( ( ))xc xcE n r n r dr  ）       (15) 

where ( )xc n  is the exchange and correlation energy 

per electron of a uniform electron gas with electron 

density n(r), and here assume ( )xc n  is known, and 

it is really can be get from the theories of 

homogeneous electron gas 
[3]

. Notice this is the LDA,  

and this quantity is known exactly in the limit of high 

density and can be computed from the Monte Carlo 

techniques
 [3]

. 

Subject to the condition 

( ) 0n r dr               (16) 

Can obtain the equation 
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
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where  
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( ) ( ) '
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n r
r v r dr

r r
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      (18) 

and 

( ) ( ( )) /xc xcn d n n dn         (19) 

is the exchange and correlation chemical energy. 

  Now we get an effective potential ( ) ( ( ))xcr n r   

because now the problem comes into an noninteracting  

electron system moving in the potential 

( ) ( ( ))xcr n r  . Therefore, given   and xc , 

from solving the one-particle Shrödinger equation 

21
[ ( ) ( ( ))] ( ) ( )

2
xc i i ir n r r r   

 
     
 

(20) 

After getting the wave equations set, then get n(r) 

2

1

( ) | ( ) |
N

i

i

n r r


          (21) 

From the LDA approximation, very good results are 

shown. Figure 1 is a solution for an atom of Argon. 

The shell structure is observed on the plot, which is 

calculated from the KS-LDA, and the structure is 

absent from the T-F model. The calculated ground state 

energy is -19.33eV for KS-LDA and is -24eV for T-F 

model, while the experimental value is 19.40eV, which 

is only 0.36% error from the LDA, but is 23.7% from 

the T-F model
 [4]

.  

 

Figure 1
[4] 

 

To solve equations (18)-(21) can get the correct n(r), 

one need to use the self-consistent way: start with an 

initial guess of n(r), put it into (18) and (19) to get   

and xc , use them in (20) to get the eigen wave- 

functions set and thus get n(r) from (21), then start the 

whole calculation with the new n(r) again, repeat until 

convergence is reached 
[3]

. Then, the energy is 

1
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'

2 | ' |

N

i

i

n r n r
E drdr

r r




 


   

( )[ ( ( )) ( ( ))]xc xcn r n r n r dr          (22) 

the required conditions for this result to be true are 

slowly varying density or high density. 

  Following this method, the result of the exact 

Hydrogen molecule energy, calculated from the 

Hartree-Fock method, from the LDA method and from 

the more complicated but accurate General Gradient 

Approximation (GGA) are plotted. LDA is the simplest 

possible density functional approximation, and it 

already greatly improves on Hartree-Fock method. But 

it just typically overbinds by about 1/20 of a 

Hartree-Fock method result
 [5]

. The GGA reduces the 

typical error in LDA by about a factor of 5 (or more). 



 

Figure 2
[5] 

 

III. Some Examples of the Application of 

DFT 

Here are two examples of finding the expression of 

electron density by DFT. Here the knowledge of 

statistical mechanics is also used to help solve the 

problems. For doing this, we introduce the 

Hohenberg-Kohn energy FHK[n(r)], which is equal to 

the internal energy. The existence of FHK is, as 

discussed above, each system has its unique density 

distribution n(r). And the effective potential 

( ) ( ( ))xcr n r  of the system can be obtained from 

( )
( )

HKF
v r

n r




   where v(r) is the effective external 

potential
 [4]

. Usually the FHK should be written into the 

sum of a kinetic energy term, a Hartree term, and an 

exchange-correlation energy term, so its functional 

derivative of n(r), v(r), should also consists of a 

effective potential term, a electrostatic potential term, 

and an exchange-correlation potential, which has been 

analyzed in previous section. 

 

1. Air 

For air, there is no interaction between gas particles, 

so u(r)=0, so the Hamiltonian (1) now becomes 

H=T+V. From the statistical mechanics theory, the 

grand partition function can be expressed as 

1
1

N=0

= exp( )
!

N

N

 
             (23) 

and 1  is the single particle partition function 

lnT                    (24) 

finish the integral according to p, can get 

1 3

1 ( )
exp( )

v r
dr

kT


         (25) 

where   is a integration constant after the integrating.  

Again, from statistical mechanics, the grand potential,  

which now is the free energy 

lnT                    (26) 

now it turns into  

( ) exp( / 8000)n r h         (27) 

use the self-consistent method mentioned above, first 

set  

3 ( )
( ) exp( )

v r
n r

kT
 

        (28) 

notice here the density n(r) actually is a initial guess. 

But now this one is already the correct one, so we 

should prove it‟s true. From (28), express v(r) in terms 

of n(r): 

3( ) ln( ( ) )v r kT n r          (29) 

and proceeding with the functional Legendre 

transformation  

[ ( )] [ ( )] ( ) ( )HKF n r v r n r v r dr    (30) 

(here FHK is the Hohenberg-Kohn free energy, it is 

obtained from a functional Legendre transform) gives 

[ ( )] ( ) ( ( ), )HKF n r n r f n r T dr      (31) 

where  

3( ( ), ) (ln( ) 1)f n r T kT n        (32) 

is the free energy per particle. Then the DFT free 

energy functional 

[ ( )] [ ( )] ( ) ( )v HKn r F n r n r v r dr     (33) 

(this is directly derived from the expression of the free 

energy with the Hohenberg-Kohn free energy) for an 

ideal air gas is 



[ ( )] ( ) ( ( ), ) ( ) ( )v n r n r f n r T dr n r v r dr   .(34) 

Minimizing this energy functional with respect to n(r), 

the left side is zero, and the left side gives 

 3( ( ))
ln( )

( )

fn r
v kT n

n r



   

   

      (35) 

which meets the initial guess (28). 

Now we can plug numbers into the express of n(r). 

The external potential v(r) is ( )v r mgh   , where 

h is the height (set h=0 at Earth‟s surface, and thus 

subtract   at this point), g is 9.8m/s
2
, T is about 

17
o
C, m is the mass of a nitrogen molecule which 

value is about 5*10
-26

 kg. So now 

( ) exp( / 8000)n r h  , where 8000 is the length 

scale
[4]

. 

 

2. Water 

Finding the density distribution n(r) of water is more 

complicated than air, because water molecules have 

higher density than the air molecules, so the interaction 

term, u(r), must be taken into consideration. An exact 

expression of the partition function and its derivative 

for this situation has not been available yet, so we shall 

use approximation way to deal with it. Assume the 

Hohenberg-Kohn energy can still be expressed by (31) 

as a homogeneous system, although now the system is 

inhomogeneous. This spirit, as mentioned above, is the 

LDA. For simplic ity, van der Waals model for f(n,T) is 

used so that both attractive and repulsive interaction of  

real atoms and molecules are taken into account. Of 

course some modifications in the previous ideal gas 

model should be made: add an attractive higher order 

of n term, representation the attractive force when 

atoms are away, and subtract from the volume per 

particle n
-1

 an excluded volume term b, representing 

the “hard core” of real particles
 [4]

. So now the 

Helmholtz free-energy per atom in the fluid (32) is: 

3

1 1

( )
( ln ) 2

nf b
v kT an

n n b n b


 


     

  

(36) 

and the presser is  

2

1 1
( )N

F F T
P an

V n n b 

 
     

     

(37). 

Then solve in the same way as did in the previous 

part, that is use (34) to get the energy, take the 

derivative and let the left side be 0 to seek the 

minimum value extreme condition, and r ight side turns 

out to be 

3

1 1

( )
( ln ) 2

nf b
v kT an

n n b n b


 


     

  

(38). 

This extreme may have several solutions now, because 

now several different n(r) could give the same v value. 

But, the n which gives the lowest free energy is the 

correct value. In current model, for temperature is not 

too high and for a limited range of values of v, there 

are two local minima, corresponding to the liquid and 

the gas phases of the fluid. 

Now again, plug in numbers to discuss the density 

distribution of water. One earth, in every unit area (per 

m
2
), it is covered by 10

8
 moles of water molecule, and 

each mole has 6.23*10
23

 molecules. The mass is about 

0.018 kg/mole, and we choose a as about 

0.48Pa*m
6
/mole

2
 and b as about 1.6*10

-5
m

3
/mole. Use 

the same expression for the potential 

( )v r mgh  
, and same T and g values as above. 

Then the final step is inverse (38), express n(r) by v, 

which step is not available, but only numerically so far. 

Use T=100
o
C and P=10

5
Pa, put them into (37). This is 

the condition for the boiling water at the surface 

around the earth, and its numerical solution for n is 

56moles/m
3
, and is equal to 10

3
kg/m

3
, which really is  

the density of boiling water
 [4]

.  

 

IV. Summary 

In the section I, it generally introduce the history of 

how to solve the multi-electron system wavefunction 

and energy, from Hartree-Fock approximation to the 

Density Functional Theory. In the section II, the first 

and second H-K theorems are briefly explained, and 

thus lead the discussion of K-S method, which is a 

feasible way to utilize the H-K model to solve the 



electrons systems, and also the LDA, which makes the 

K-S method could be proceeded forth, by dealing the 

exchange energy part with the uniform gas which can 

be solved accurately. In section III, there follows two 

examples, using the Hohenberg-Kohn energy FKH, to 

try to compute the density distribution of two kinds of 

big molecule situation in air and water. 
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