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The Problem

Describe how a white dwarf evolves into a neutron star. Compute the neutron degeneracy pressure
and balance the gravitational pressure with the degeneracy pressure. Use the Saha equation to
determine where the n ↔ p+ + e− equilibrium is below the ’Fermi Sea.’ Provide experimental
evidence for “starquakes.” Explain how the universe would be a different place if Mn −Mp < me.

Description of Solution

The collapse of a white dwarf core will be described qualitatively. In order to calculate the neutron
degeneracy pressure following the collapse, I will:

1. Find the highest filled neutron state in the star (nF ).

2. Compute the energy of this state, which is the Fermi energy εF .

3. Compute the internal energy of the star (U), in terms of the Fermi energy.

4. Compute the degeneracy pressure using P = − ∂U
∂V

5. Compute the star’s gravitational self-energy.

6. From the gravitational self-energy, calculate the star’s gravitational pressure, using the same
method as above.

7. Balance the two pressures by requiring that they sum to zero at equilibrium.

8. From the equilibrium equation, find the equilibrium radius.

9. Derive a “danger of collapse” condition.

I will find the relative neutron abundance by first deriving a partition function for the neutrons and
then applying the Saha equation.

An example of observational evidence for a starquake will be briefly described, and a discussion of
the changes to the universe if the neutron and proton were closer in mass will then occur.
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The Birth of a Neutron Star

In very massive stars, the core’s nuclear fuel will eventually become sufficiently depleted by fusion so
that radiative pressure is no longer capable of supporting the upper layers of the star. Collapse will
begin. In cores large than the Chandrasekhar limit (typically quoted as 1.4MSun), electron degen-
eracy pressure will be generated as in a white dwarf, but the electrons will become ultra-relativistic.
Ultra-relativistic electrons provide a pressure that has the same scaling as the gravitational pressure
of the star’s collapse, and are unable to reach an equilibrium. This marks the beginning of a neutron
star.

As the core continues to collapse past the white dwarf state, the matter within it will continue to
heat up due to the release of gravitational potential energy. Enough free energy is available that the
following inverse beta decay reaction can occur:

p+ + e− + 1.36MeV→ n + ν̄e

Ordinarily neutrons generated in this fashion would be unstable, and the neutron would turn back
into an electron and a proton within ~10 minutes via beta decay. This is not possible, however, as
the degenerate electron gas in the star has filled all of the available electron states in the core. No
electrons (of energies ≤ 1.36MeV can be formed, which makes the neutrons stable. As the energy
further increases, inverse beta decay takes place within an surviving atomic nuclei, reaching a peak
with iron:

56Fe + 3.7MeV→56 Mn + ν̄e

In this manner, a very large number of neutrons is generated within the core. The outflow of
neutrinos is of sufficient flux and the surrounding material of sufficient density that the collapse of
the star is slowed from a free-fall time by neutrino pressure.

At some point, enough neutrons have been created that they become degenerate. The neutron
degeneracy pressure is enough to immediately halt the collapse and to establish an equilibrium state
(unless the core’s mass exceeds the limits of neutron degeneracy pressure, in which case it further
collapses to a black hole or possibly a quark star). The transition from collapse to equilibrium is very
sudden, and the infalling material experiences a “bouce” against the degenerate core, which creates
an outward-propagating shock wave. The shock wave is further boosted by neutrino pressure from
the core. This shock is called a supernova, and can have a power output on the order of the Sun’s
integrated luminosity over its lifetime.

Calculation of Degeneracy Pressure

We begin by calculating the quantum number magnitude (nF =
√

n2
x + n2

y + n2
z) of the neutron

at the very topmost filled energy level. This assumes zero temperature of the neutrons, which is
not entirely accurate, but is a reasonable approximation. The formula relating the total number of
neutrons N to nF is:

N = 2
(

1
8

) (
4
3
πn3

F

)
(1)
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The factor of 2 represents the fact that both spin up and spin down are available in each quantum
state. The remainder expresses the fact that the neutron is able to occupy any state in the positive
octent of the quantum configuration space sphere. Rearranging, we find:

nF =
(

3N

π

) 1
3

(2)

At a given energy level, a neutron has a momentum |p| = hn

2V
1
3
, corresponding to the nth wave

solution in quantum mechanics. We can use this to compute the Fermi Energy:

ε(n) =
|p|2

2m
=

h2

8mL2
|n|2 (3)

εF = ε(nF ) =
h2

8m

(
3N

πV

) 2
3

(4)

Note that we have assumed that the neutrons are behaving non-relativistically. This assumption
will be examined again shortly. The symbol m denotes the neutron mass, not the electron mass.

We now compute the internal energy of the core, excluding gravitational energy. This is done by
integrating the energies of all of the filled energy levels. Since the core is degenerate, these levels
begin at the ground state and are continuously filled up to nF .

U = 2
ˆ ˆ ˆ

ε(n)d3n = 2
ˆ nF

0

ˆ

π
2

0

ˆ

π
2

0

h2

8mV
2
3
n2n2 sin θdndθdφ (5)

=
(

πh2

8mV
2
3

)
n5

F

5
=

(
h2

8mV
2
3
n2

F

) (π

3
n3

F

) (
3
5

)
(6)

=
3
5
NεF (7)

The factor of 2 exists to account for the spin up and spin down available to each state. The
integration limits restrict n to the positive octent of the sphere.

From this expression for the internal energy, we can compute the degeneracy pressure in the usual
thermodynamic way:

Pd = −∂U

∂V
=

2
3

U

V
=

2
5

h2

8m

(
3
π

) 2
3

(
N

V

) 5
3

(8)

Next we turn our attention to the gravitational pull of the star upon itself. Its gravitational self-
energy is given, in the Newtonian Theory, by:

Ug = −3
5

GM2

R
= −3

5
GM2

(
4π

3V

) 1
3

(9)

The assumption that Newtonian Gravity is an adequate description is suspect and will be revisited
shortly.
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The gravitational pressure is calculated as before:

Pg = −∂Ug

∂V
= −GM2

5

(
4π

3

) 1
3

V −
4
3 (10)

The negative value indicates that the pressure is attempting to compress the star instead of to
expand it.

The pressures are balanced simply:

Pd + Pg = 0 (11)

By making two substitutions, we can now derive a theoretical value for the core’s radius at equilib-
rium:

M = mN (12)

V =
4
3
πR3 (13)

R =
3
8

(
3
2

) 1
3 h2

Gπ
4
3 m

8
3
M− 1

3 (14)

Assuming that our core has a mass of M = 1.5MSun = 3 × 1030kg, we arrive at an estimate of a
neutron star’s radius and degeneracy pressure:

R = 10.75km
Pd = 2× 1033Pa

This gives a density of:

ρ =
M

4
3πR3

= 5.75× 1017 kg
m3

This density is similar to that within an atomic nucleus.

An examination of the Fermi energy of the particles (using equation 4) shows that it is 97 MeV. This
is around 10% of the neutron rest mass, so we are still in the non-relativistic regime. The correction
for ignoring relativity when computing the Fermi energy is of the order of a few percent.

As seen in the white dwarf case, ultra-relativistic neutrons will also exhibit a crisis in that their
degeneracy pressure will scale with the same power as gravitational pressure (see, for example, [1]).
We can estimate when this occurs by assuming that neutrons become relativistic when their average
energy is similar to their rest mass. This gives an estimate of the maximum mass as so:

U

N
> mc2 (15)

3
5

h2

8m

(
3N

πV

) 2
3

> mc2 (16)

Munstable >
3 1

4 5 3
4 c

3
2 h

3
2

2 7
4 G

3
2 m2π

= 2.41× 1031kg ≈ 12MSun (17)
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These results are within an order of magnitude of the published values for typical neutron stars.
These are typically given (for example, on Wikipedia) as R ~ 6 km and a maximum mass of ~3 solar
masses. I suspect that this difference occurs because of the expression used for the gravitational
self-energy. It would seem that, at these extremely high densities, the effects of General Relativity
are non-negligible.

The Neutron Abundance

We now look for the location of the equilibrium in the reaction p+ + e− ↔ n + ν̄e as a function of
temperature. The basic Saha equation is given as equation 18 (taken from [2]).

[np] [ne]
[nn]

=
ZpZe

Zn
(18)

We then break the partition function for each particle into the product of a kinetic factor and an
internal energy factor. We can compute the kinetic factor by allowing particle momenta to take on
all absolute values above the Fermi momentum. The Fermi momentum is:

pF =
hnF

2L
=

h

2

(
3N

πV

) 1
3

(19)

The integral over the allowed momentum space gives:

2
h3

ˆ ∞

pF

exp
(
−p2

2mkT

)
p2dp (4π) =

4πmkT

h3

(
2pF exp

(
−p2

F

2mkT

)
+
√

2πmkT erfc
(

pF√
2mkT

))
(20)

The erfc function is related to the better-known error function by erfc(x) = 1− erf(x).

We use the internal partition function “2” for both the protons and the electrons, as they can be in
either a spin up or spin down state. For the neutrons, we use 2e−β∆E with ∆E = −1.36MeV, since
this corresponds to the “binding energy” of a neutron in beta decay. The factor of two accounts for
the neutron’s spin possibilities.

This provides:

[np] [ne]
[nn]

=
8πm∗kT

h3

(
2pF exp

(
−p2

F

2m∗kT

)
+
√

2πm∗kT erfc
(

pF√
2m∗kT

))
exp(β∆E) (21)

where m∗ = mpme

mn
= 9.098× 10−31kg.

We parameterize the concentrations using a reaction coordinate: [np] = xn, [ne] = xn, and [nn] =
(1− x)n. We now have:

x2

1− x
=

8πm∗kT

nh3

(
2pF exp

(
−p2

F

2m∗kT

)
+
√

2πm∗kT erfc
(

pF√
2m∗kT

))
exp(β∆E) (22)

Using the density 3.4× 1044 from the previous calculation, I attempted to plot this function and to
find roots numerically. Unfortunately, Mathematica experiences numerical underflows even at very
low temperatures. By inspecting the numerical relationships being solved, I find it clear that at the
temperatures present in a neutron star core that neutrons will dominate the species present.
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Starquakes

One particularly good piece of evidence for starquakes is the outburst observed from the object SGR
1806-20 on December 27, 2004. The details of this observation are given in [3].

The equation of state of neutron star matter is not well-understood, but it is thought that the core
consists of a fluid of primarily neutrons supported by neutron degeneracy pressure. Surrounding
this core is a solid crust of neutron matter, often called “neutronium” by science fiction authors. The
magnetic field of the neutron star is threaded through this solid surface, in a manner similar to the
way in which the Sun’s magnetic field permeates its photosphere.

A starquake occurs when the crust, which is ordinarily rigid, undergoes sudden motion. This motion
is usually triggered by the neutron star approaching a more spherical shape as it spins down from
rapid rotation (the energy of rotation is lost to gravitational waves). Due to the fact that the crust
material is extremely stiff, the adjustments are abrupt, like an earthquake.

SGR 1806-20 is a magnetar, which is a neutron star possessing a very large (teragauss) magnetic
field. On December 27, 2004, it was observed to undergo a sudden very large emission of gamma rays.
This flare was detected by the International Gamma-Ray Astrophysics Laboratory (INTEGRAL),
as well as by four other missions, including Swift. The 142s flare emitted energy of order 1042erg.

The physical model which best matches this flare is a starquake on the neutron star being observed.
The large release of energy is due to magnetic reconnection as the crust shifts, similar to how solar
flares are generated. Several timing features of the light curve for this event are consistent with
these magnetic and dynamical timescales. Indeed, starquakes are a possible explanation for at least
some of the short-duration gamma ray bursts.

Figure 1: Starquake Light Curve (SGR 1806-20 from RHESSI Detector) [3]
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Changing the Universe

If Mn −Mp < me, then the inverse beta decay reaction p+ + e− → n + ν̄e would be exothermic,
and the more conventional beta decay process would be endothermic. This would have the following
effects:

1. Neutrons would be stable at low temperatures and pressures.

2. Atoms would be unstable. Whenever a proton and electron approached one another, they
would combine to form a neutron.

3. Protons and electrons would only be found in areas of high temperature and density, as there
would have to be a degenerate sea of neutrons in order to support stable protons and electrons.

The universe would essentially become “neutrons, neutrons, everywhere.”

Conclusion

We have shown that neutrons stars with masses of order 1.5MSun are able to support themselves
using neutron degeneracy pressure with radii on order of R = 10km. We have also demonstrated
that in these stellar cores, neutrons are the dominant species present. Furthermore, a description
has been given both of the process of neutron star formation and of starquakes on their surfaces.
Some experimental evidence has been offered to support the existence of starquakes. Finally, we
have considered what would happen if the difference in masses between the proton and the neutron
were a bit smaller.
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