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Abstract

This paper details the current list of detected moledules in the inter-
stellar medium (ISM) and circumstellar envelopes (CSEs). In tabulating
these molecules, the methods used to detect them are also examined.
These methods, almost exclusively, involve molecular spectroscopy. As
of May 2013, there have been around 180 such molecules detected in the
ISM or CSEs.

1



1 Atomic Spectroscopy

Atomic spectroscopy, also known as electronic spectroscopy, is a method of
determining the chemical composition of some material (i.e. a gas cloud) by
studying its light spectrum. These spectra will either be absorption or emission
spectra. This phenomenon is entirely governed by the electron transitions of
the valence electrons in the atoms occupying the material. If radiation of some
kind is incident on an atom and has specific energy and wavelength the electron
will transition to an excited state. If a source of continuous blackbody radiation
is located behind a cold gas cloud, the atoms in the gas cloud will absorb
some of the radiation at certain, specific wavelengths. This will then produce
an absorption spectrum, essentially a continuous spectra with lines at certain
wavelengths missing. A hot gas cloud will likely have many atoms with electrons
already in an excited state. These electrons my spontaneously transition to a
lower excited state, and in so doing emit a photon corresponding to the lost
energy of the electron. This type of material will produce an emission spectrum,
which only has lines at the specific wavelengths determined by the atoms within
it. Atoms of different elements produce individually distinct spectra, allowing
spectroscopy to identify the chemical compostion (the elements) contained in
some cosmic material.

2 Molecular Spectroscopy

The detection and analysis of the spectra of molecules is not nearly as simple as
that of single atoms. The introduction of more atoms adds greater complexity
to the energy states in which the molecules reside, namely, the consideration
of the nuclear motion as well as the electron motion. Using the simplification
of the Born-Oppenheimer approximation, the motion of the electrons is consid-
ered with the nuclei fixed. Mathematically, this allows the wavefunctions for
the electrons and nuclei to be separated (each dependent on their respective
coordinates only):

Ψtot = Ψel(qel)Ψnuc(qnuc). (2.0.1)

In a similar manner, the nuclear wavefunction can also be separated into vibra-
tional and rotational components. For molecules, vibrational motion is defined
as the relative motion of the separation between the nuclei of the component
atoms, whereas rotational motion is simply the change in orientation of the
molecule as measured in the fixed laboratory frame. Experiments have shown
empirically that the separation between vibrational energy levels is much larger
than that of rotational energy levels, thus vibrational frequencies are also much
larger than rotational frequencies. This allows the vibrational motion to be
described by the rapidly moving electrons for a fixed molecular orientation. Or
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in other words, the three wavefunctions can be defined only in terms of their
respective coordinates:

Ψtot ≈ Ψel(qel)Ψvib(qvib)Ψrot(qrot). (2.0.2)

Consequently, the total energy of the molecular system can be simply written
as a sum of the energies of the three types of motion:

Etot = Eel + Evib + Erot. (2.0.3)

It is of enormous consequence that the Born-Oppenheimer separation leading to
Equations 2.0.2 & 2.0.3, though just an approximation, albeit a very accurate
approximation in most instances, gives a consistent and reliable description of
the energy level scheme. This familiar energy level hierarchy (∆Eel � ∆Evib �
∆Erot) is shown in Figure 1.

Figure 1: Molecular energy level diagram show-
ing the Born-Oppenheimer classification. Each
electron state contains a set of vibrational states,
which in turn each contain a set of rotational
states.[2]

As these three types of molecular motion are separable in this way, so too do
these motions produce separate, and distinct spectra. These spectra are an-
alyzed by the spectroscopy corresponding to each of the motions: electronic,
vibrational, and rotational spectroscopy. They are also often named by the re-
gion of the electromagnetic spectrum that each examines: ultraviolet and visible,
infrared, and microwave spectroscopy. In other words, electronic transitions ab-
sorb or produce photons in the ultraviolet and visible range, while vibrational
transitions absorb or produce light in the infrared range, and finally rotational
transitions absorb or produce photons in the microwave region. Though ideally,
the spectra from the three types of motion could be analyzed separately, in real
molecules the rotational and vibrational spectra tend to be analyzed together in
”rovibrational” spectroscopy, sometimes vibrational and electronic spectra are
analyzed together in ”vibronic” spectroscopy, and sometimes all three spectra
are measured simultaneoulsy in ”rovibronic” spectroscopy.
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3 Rotational Spectroscopy

Molecules in a gas will have some of their thermal energy stored in rotational
energy. An isolated molecule will have this rotational energy quantized, where
transitions between individual rotational levels gives rise to a rotational spec-
trum. These levels will remain well defined as long as the molecule remains
isolated. Collisions with other molecules will likely change its rotational state
and broaden the spectral lines. If the collision frequency is high enough com-
pared to the rotation frequency, the lines will be broaden so much that the
individual transitions would no longer be visible. Therefore, rotational spec-
troscopy is performed on gaseous samples at low pressures.

3.1 Classification of Molecular Rotors

The free rotation of a molecule is quantized, so that the rotational energy and the
angular momentum can only take on certain fixed values related by the moment
of inertia, I. Molecules have three moments of inertia, IA, IB, and IC , about
three mutually orthogonal axes, A, B, and C, with the origin at the center of
mass of the system. Generally, the moments of inertia are defined as IA≤IB≤IC .
A convenient method of examining the rotations of the molecules is to divide
them into four classes based on the symmetry of their structure: Spherical
top molecules, linear molecules, symmetric top molecules, and asymmetric top
molecules.

Spherical top molecules (spherical rotors) have all three moments of inertia equal
to each other: IA = IB = IC .

Linear molecules have their moments of inertia related by IA�IB = IC . IA can
usuall be taken to be zero.

Symmetric top molecules (symmetric rotors) have two moments of inertia equal
to each other IA = IB or IB = IC . Thus symmetric rotors are broken down
one tier further. Prolate symmetric tops (cigar shape) satisfy IA < IB = IC ,
whereas oblate symmetric tops (disk shape) satisfy IA = IB < IC .

Asymmetric top molecules (asymmetric rotors) have different values for all three
moments of inertia.

3.2 Spherical Top Molecules

Spherical top molecules have no net dipole moment, therefore electric dipole
transitions are forbidden, and pure rotational spectra cannot be observed by
either absorption or emission spectroscopy.
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3.3 Linear Molecules

Treating a diatomic molecule as a rigid rotor of two point masses, m1, and m2,
separated by a distance r, then classicaly, its energy of rotation is equivalent to

Erot =
1

2
Iω2 (3.3.1)

where I is the moment of inertia of the rigid body and ω is its angular velocity
(measured relative to a laboratory-fixed axis system). The moment of inertia
for a diatomic molecule is given as

I = µr2 =
m1m2

m1 +m2
r2 (3.3.2)

where µ is called the reduced mass. More generally, the moment of inertia is

I =
∑
i

mir
2
i (3.3.3)

with mi the mass of atom i at distance ri from the center of mass.

Transforming Equation 3.3.1 from classical to quantum mechanics requires trans-
forming the appropriate vectors to their operator representatives. It is unkown
how velocity vectors transform, but transforming classical momenta is well es-
tablished. In this case, the angular velocity vector ω is changed to angular
momentum P . Equation 3.3.1 is thus rewritten as

Erot =
1

2
P 2/I (3.3.4)

where

P = Iω.

In transforming to quantum mechanical operators, P is replace by h̄J . With
this replacement, the energy expression is also transformed to an operator, the
rotational Hamiltonian Hrot,

Hrot =
h̄2

2I
J2 (3.3.5)

Solving the hamiltonian for its corresponding eigenvalues and eigenfunctions,
we find that J2 satisfies:
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J2ΨJM = J(J + 1)ΨJM (3.3.6)

J is the rotational angular quantum number and takes integral values only,
and ΨJM is the corresponding eigenfunction (and, as it turns out, rotational
wavefunction). Therefore, the allowed energy levels of Hrot are

Erot =
h̄2

2I
J(J + 1) where J = 0, 1, 2, . . . (3.3.7)

Clearly, the rotational energy levels increase quadratically with J , and depend
inversely on I. The coeffecient of J(J + 1) determines how closely spaced the
energy levels are, and is known as the rotational constant, Be. In wavenumber
units (cm−1), the rotational constant is

Be/cm−1 =
h̄2

2hcI
(3.3.8)

And finally, in wavenumber units, the rotational energy levels are given by

Erot

hc
= BeJ(J + 1) where J = 0, 1, 2, . . . (3.3.9)

Using the diatomic molecules allows the hamiltonian to be solved in this way, but
these rotational energy levels in Equation 3.3.9 are true of any linear molecule.

3.4 Centrifugal Distortion

The above energy levels are an ideal case, but the simple motion of rotating
creates a centrifugal force that wants to pull the atoms apart. The bonds be-
tween atoms are not infinitely stiff, but as the molecule rotates faster (J gets
larger) the masses move apart, increasing the moment of inertia and reducing
the rotational constant. Thus, a term is added to Equation 3.3.9 to account for
this reduction. Using Hooke’s law and treating stretching motion as a simple
harmonic oscillator, then using a taylor expansion and taking the first order
correction term, the centrifugal distortion term is found to be −DeJ

2(J + 1)2.
Consequently, the rotational kinetic energy is

Erot

hc
= BeJ(J + 1)−DeJ

2(J + 1)2. (3.4.1)

De is the centrifugal distortion constant given by

De =
4B3

e

ω2
e

(3.4.2)
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where ωe is the harmonic vibrational frequency (in cm−1).

As only molecules that are centrosymmetric (i.e. homonuclear diatomic molecules)
vibrate harmonically, most linear molecules vibrate anharmonically. If anhar-
monicity is to be taken into account, terms in higher powers of J (higher order
correction terms from the above taylor expansion) should be added to the ex-
pression for the energy levels.

3.5 Symmetric Top Molecules

The rotational motion for symmetric top molecules is governed by two quantum
numbers: the total angular momentum, J , and its projection on the symmetric
axis, K. A prolate symmetric top has energy levels given by

Erot

hc
= BJ(J + 1) + (A−B)K2, (3.5.1)

where the rotational constants A and B are equal to

A =
h̄2

2hcIA
, (3.5.2)

B =
h̄2

2hcIB
, (3.5.3)

and A > B. An oblate symmetric top has energy levels equivalent to

Erot

hc
= BJ(J + 1) + (C −B)K2, (3.5.4)

where the rotational constant C is equal to

C =
h̄2

2hcIC
, (3.5.5)

and C < B.

3.6 Asymmetric Top Molecules

Since asymmetric top molecules have three different moments of inertia, there
is no general formula describing the energy levels. With these three indepen-
dent moments of inertia, two other independent quantum numbers need to be
considered, however their values cannot be determined in closed form.
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4 Vibrational Spectroscopy

4.1 Simple Harmonic Oscillator

Once again, begin with a diatomic molecule, as it is the simplest molecular form,
and thus most logical place to start. Take the simplest vibrational coordinate

q = r − re (4.1.1)

where r and re are the instanteous and equilibrium bond lengths respectively.
First, solving the simple harmonic oscillator, and reducing the problem to a
one-body form, the Hamiltonian is given as a sum of the kinetic and potential
energies (Hooke’s Law)

Hvib =
1

2
p2/µ+

1

2
kq2 (4.1.2)

where p is the linear momentum vector, µ is the reduced mass, and k is the
spring constant.

The energy eigenvalues that are solutions to Equation 4.1.2 are given as

Ev = (v +
1

2
)hν (4.1.3)

or more appropriately

Ev = (v +
1

2
)hcωe. (4.1.4)

v is the vibrational quantum number, which can only take integer values 0, 1,
2, 3, . . .

4.2 Anharmonic Oscillator

Since most molecules are not ideal, their atoms do not simple vibrate harmoni-
cally. On the contrary, an anharmonic oscillator term needs to be added to the
hamiltonian to account for this effect. This additional anharmonic term takes
the form of the Morse potential function

U(q) = De[1− e−βq]2. (4.2.1)

The energy eigenvalues that satisify this anharmonic hamiltonian are

8



Evib

hc
= (v +

1

2
)ωe − (v +

1

2
)2ωeχe. (4.2.2)

where χe is a positive quantity called the anharmonicity constant.

5 Rovibrational Spectroscopy

Molecular transitions most often occur with simultaneous transitions between
rotational and vibrational energy levels. For heteronuclear diatomic molecules
having a general formula AB the energy levels for the rovibrational spectrum
are Erot-vib = G(v) + Fv(J). G(v) is the anharmonic oscillator component given
by

G(v) = ωe(v +
1

2
)− ωeχe(v +

1

2
)2. (5.0.3)

Fv(J) is the rotational component given by

Fv(J) = BvJ(J + 1)−DJ2(J + 1)2. (5.0.4)

The rotational constant, Bv, depends on the moment of inertia of the molecule
Iv, which varies with the vibrational quantum number v,

Bv =
h̄2

2hcIv
, (5.0.5)

Iv =
mAmB

mA +mB

d2
v . (5.0.6)

The energy levels of the rovibrational states are finally, therefore, given by

Erot-vib =

[
ωe(v +

1

2
) +BvJ(J + 1)

]
−
[
ωeχe(v +

1

2
)2 +DJ2(J + 1)2

]
. (5.0.7)

The first two terms correspond to the harmonic oscillator and rigid rotor, and the
second two terms make a correction for anharmonicity and centrifugal distortion.

For homonuclear diatomic molecules, the electric dipole moment is zero, so
the fundamental vibration transition is forbidden. However, weaker electric
quadrapole transitions can sometimes be seen in these molecules.
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6 Electronic Spectroscopy

Electronic spectroscopy for molecules is similar to that for single atoms. The
component of the angular momentum vector of each electron along the inter-
nuclear axis can only take values ml = l, (l − 1), (l − 2), . . . ,−l. The variable,
λ, is the absolute value of ml, where λ = 0, 1, 2, . . . , correspond to σ, π, δ, . . . ,
analagous to atomic s, p, d, . . . , orbitals. For centrosymmetric molecules, parity
under inversion is indicated by g for even and u for odd. The term symbols of
electronic levels in diatomic molecules are characterized by the component of
the total angular momentum along the intermolecular axis, Λ =

∑
i λi. Corre-

sponding to Λ = 0, 1, 2, . . . , diatomic molecules have designations Σ, Π, ∆, . . . ,
analagous to S, P, D, . . . for atoms. The degeneracy of the term is indicated by
a superscript with the value 2S+1, representing the orientation of the total spin
angular momentum, Σ, with respect to the internuclear axis, where Σ can take
the values S, (S−1), (S−2), . . . ,−S. The total angular momentum Ω is the sum
of the orbital and spin angular momenta along the internuclear axis, Ω = Λ+Σ.
Molecular terms can then be designated by 2S+1Λu, g, where the subscripts only
apply to centrosymmetric species. For Σ terms, a ± superscript indicates the
behavior of the wave function under reflection in the plane containing the two
nuclei.

For polyatomic molecules, electronic transitions are often connected to the ex-
citation of specific types of electrons or electrons associated with a small group
of atoms in the species.

7 Selection Rules

Finally, the selection rules in all of the above types of spectroscopy are integral
in determining the transition frequencies and wavelengths of the absorbed or
emitted photons. These selection rules describe which transitions are allowed,
and therefore which energies these transitions can have. The first rule is that all
of the molecules must have a permanent electric dipole moment. Those that do
not can be observed through a magnetic dipole moment or an electric quadrapole
moment, etc., but these are much weaker and thus harder to distinguish.

Linear homonuclear diatomic molecules, have no net electric dipole moment, but
weak rotational quadrapole transitions with ∆J = ±2 can be observed. Linear
heteronuclear diatomic molecules have allowed transistions with ∆J = ±1. In
general, rotational transitions need to satisfy ∆J = 0,±1 and ∆K = 0 or ± 1,
and a parity transition of +↔ −.

Electric dipole rovibrational transitions must satisfy ∆v = ±1 and ∆J = 0,±1,
where ∆J = +1 corresponds to what is known as the R branch, ∆J = 0 to the Q
branch, and ∆J = −1 to the P branch. These branches are illustrated in Figure
2. ∆v = ±2 is also allowed and is called an overtone. Electric quadrapole
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transitions must satisfy ∆J = 0,±2, where ∆J = +2 corresponds to the S
branch, ∆J = 0 to the Q branch, and ∆J = −2 to the O branch. Each must
also satisify parity transitions of +↔ −.

Figure 2: Rovibrational energy level diagram and
emisson spectrum[1]

The selection rules for electronic transitions are ∆Λ = 0,±1, ∆S = 0, ∆Σ = 0,
and ∆Ω = 0,±1. The selection rules for symmetry are, for Σ terms, only
Σ+ ↔ Σ+ and Σ− ↔ Σ− are allowed. Lastly, for centrosymmentric species,
only transitions with a change in parity (e.g. u↔ g) are allowed.
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8 Instellar and Circumstellar Molecules[5]

2 Atoms 3 Atoms 4 Atoms 5 Atoms 6 Atoms 7 Atoms

H2 C3 c−C3H C5 C5H C6H
AlF C2H l−C3H C4H l−H2C4 CH2CHCN
AlCl C2O C3N C4Si C2H4 CH3C2H
C2 C2S C3O l−C3H2 CH3CN HC5N
CH CH2 C3S c−C3H2 CH3NC CH3CHO

CH+ HCN C2H2 H2CCN CH3OH CH3NH2

CN HCO NH3 CH4 CH3SH c−C2H4O
CO HCO+ HCCN HC3N CH3NH+ H2CCHOH

CO+ HCS+ HCNH+ HC2NC HC2CHO C6H–

CP HOC+ HNCO HCOOH NH2CHO
SiC H2O HNCS H2CNH C5N
HCl H2S HOCO+ H2C2O l−HC4H
KCl HNC H2CO H2NCN l−HC4N
NH HNO H2CN HNC3 c−H2CCNH
NO MgCN H2CS SiH4 H2CCNH
NS MgNC H3O+ H2COH+ C5N–

NaCl N2H+ c−SiC3 C4H– HNCHCN
OH N2O CH3 HC(O)CN
PN NaCN C3N– HNCNH
SO OCS PH3 CH3O

SO+ SO2 HCNO
SiN c−SiC2 HOCN
SiO CO2 HSCN
SiS NH2 H2O2

CS H+
3 C3H+

HF
H2D+

HD+
2

HD SiCN
FeO AlNC
O2 SiNC

CF+ HCP
SiH CCP
PO AlOH
AlO H2O+

OH+ H2Cl
CN– KCN
SH+ FeCN
SH HO2

HCl+ TiO2

TiO
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8 Atoms 9 Atoms 10 Atoms 11 Atoms 12 Atoms >12 Atoms
CH3C3N CH3C4H CH3C5N HC9N c−C6H6 HC11N

HC(O)OCH3 CH3CH2CN (CH3)2CO CH3C6H C2H5OCH3 C60

CH3COOH (CH3)2O (CH2OH)2 C2H5OCHO n−C3H7CN C70

C7H CH3CH2OH CH3CH2CHO
C6H2 HC7N

CH2OHCHO C8H
l−HC6H CH3C(O)NH2

CH2CHCHO C8H–

CH2CCHCN C3H6

H2NCH2CN
CH3CHNH
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