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Abstract: We investigate the dynamics of a current-biased Josephson junction quantum 
bit or “qubit” coupled to an LC resonator. The Hamiltonian of this superconductor-based 
system is developed and the energies and eigen-functions of the entangled states are 
studied by Harmonic approximation. Since such a superconducting junction behaves as a 
two-level artificial atom coupled to a harmonic oscillator, this system can be treated as a 
solid-state analog of an atom in a cavity – which is the fundamental system in the well-
developed field of Cavity Quantum Electrodynamics.   
 
 
1 .Josephson Junction: A superconducting qubit 
The structure of a Josephson Junction is shown in Fig.1. As we already know, the relation 
between the tunneling current flowing through the junction and the voltage across the 
junction is given by Josephson Relations[1]: 
 

                                       
 
 
 
 
 
 
 
where,     is the phase difference between the two superconductors;      is the critical 
current of the junction and                                        is the flux quantum. 
 
2. A Josephson Junction coupled to a LC resonator  
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The system to be considered is shown in Fig.2, a Josephson Junction coupling to a LC 
resonator in series. The relation between current passing through the resonator and 
current through the junction can be obtained by Kirchhoff's Law: 
 
 
 
 
 
Plug Josephson Relations into these equations and make a substitution 
 
 
 
We have  
 
 
 
 
 
 
 
 
The Lagrangian of the system is easily obtained from these two equations and thus the 
Hamiltonian: 
 
 
 
 
 
  
with conjugate momenta: 
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and  
 
 
 
 
 
 
 
 
 
 
 
 
3. Decoupled momentum and coupled potential 
Let consider a transformation defined by: 
 

                       
Under this transformation, the Hamiltonian becomes  
 
 
 
 
This potential is shown below at              , where the lowest two states of the Junction 
have an energy space that equals the energy space of the LC resonator. 
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4. Eigen energy and states of the system 
We can start directly from the Hamiltonian  
 
 
 
 
 
to calculate the eigen-value and  states of the system using numerical method. This 
involves a large matrix that can not be solved by general algorithms.  
 
Here I will use harmonic oscillator approximation to solve this problem.  
 
Near the lowest point of the washboard potential, we can expand the potential and drop 
all the constants to get a new Hamiltonian: 
 
 
 
 
Where, 
 
 
 
 
 
 
 
 
 
 
 
This Hamiltonian can be written in matrix form: 
 
 
 
 
Diagonalizing gives us the energy: 
 
 
 
 
When we tune the bias current of the Josephson Junction (change the frequency of the 
qubit), we can observe the entangled states between the LC resonator and the qubit, 
denoted by an avoided crossing in the plot of Energy VS bias current.  
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• Energy of the system as a function of J, the normalized bias current in 

the Junction. The state notation is /Junction, LC>. Circles denote the 
uncoupled /0> to /1> level spaces for Junction (blue) and LC 
resonator (black).  

• At the resonance point where                 , an avoided crossing occurs 
with a split of  

 
 
 
In experiment, the system is first cooled down to ground state /00>. 
For low and high bias, the energy level transitions are from the ground state /00> to 
excited states /01> or /10>, depending on the frequency of microwave we apply to the 
system. At the resonance point, the first two excited states become:  
 
 
 
At the resonant point, the energy of the system is:                            and the normal modes 
are:  
 
 
We can construct the first few states of the system by using the creation operators: 
 
 
and the definition: 
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The first few states are:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
These are the eigen-functions of the system under Harmonic Oscillator Approximation 
with transformed coordinates.  
 
5. Conclusion and future work 
We derived the Hamiltonian for the system of a Josephson phase qubit coupled to a LC 
resonator. Harmonic approximation is utilized to calculate the energy of the system and 
the entangled states are verified by an avoided crossing in the energy spectrum. First six 
states of the system are obtained.  
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Although harmonic approximation is sufficient for us to understand the energy and 
entanglement of the system, it is too rough for describing the energy and state explicitly. 
Plus, it becomes less valid when the well of the washboard potential goes shallow, which 
is in fact the right case for a qubit. Therefore a more powerful technique is required in 
future work to solve for the energies and states of the system. 
 
Considering this system as a solid-state analog of an atom in a cavity[2], we shall explore 
the possibility of observing in such a system, quantum-mechanical effects such as the AC 
Stark shift, which has been observed in an atom-cavity system[3] and more recently, in a 
Cooper pair box-resonator system[4]. This might be useful in developing non-demolition 
types of measurements for determining the state of a qubit. 
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