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This paper analyses the reflection resonances in a washboard potential. To better
understand what is happening in the washboard potential, different linear potential barrier
were studied, as well as a hyperbolic-tangent shaped potential. A resonance occurs when
the phase shift, ¢(F), undergoes a rapid change of 27 radians. The phase angle shows a
Lorentzian line shape and from the equation of the line we can find the energy Ejy and
lifetime  of the quasi-bound state. This is applicable to a differential reflection resonance
interferometer.



1 Introduction

When a beam of energy beam is shot at a potential barrier, it is either transmitted or
reflected, with some probability. If the transmission probability is very low, the reflection
probability is very high[1]. One potential that exhibits 100% reflection probability is the
washboard potential, often encountered in biased Josephson Junctions, which themselves
are useful in high speed circuits. Our washboard potential is shown in Fig. 1.

Particles that are incident from the left of the potential, with energies between -10eV’
and 19.4eV will be reflected with 100% probability. This means that R(E) = |r(E)|? = 1.0.
r(E) is the reflection probability amplitude, defined by r(E) = 1e?¢(£)_ r(E) goes through
resonances where the reflection phase angle ¢(E) goes through rapid shifts. This happens
when we scan through a certain, narrow energy range. The resonances can be described
by Lorentzian line peaks.

The input and output amplitudes of the energy beam are related through the transfer
matrix(notation used in [2]):
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BL t21<E) tQQ(E) BR

For a reflecting boundary, to1(EF) = t11(E)*. The first element of the transmission
e

t
matrix is given by ¢11(E) = a(E) + ib(E). The reflection probability amplitude and the
phase angle are

r(E) = ta(E)/tu(E) (1)
¢(E) = tan”'b(E)/a(E) (2)
Washboard Potential
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Figure 1:

The Washboard Potential. Vj = —10eV, L = 1nm, V] = 1eV



2 Preparation
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Figure 2: Slanted Potential V; = —10eV, Vg = 10eV. « varies from 0.2rad to 1.5 rad

Before analyzing the washboard potential, we analyzed shifts in the phase angle ¢(E)
which occured from bouncing energy against simpler potentials. The first potential ana-
lyzed was a simple slanted potential, where the angle the barrier made with the horizonal
asypmtotic left and right potentials was changed. Fig. 2 shows the first and last potential
barriers against which energy beams were bounced. The beam had an energy of £ = 0eV’
and always hit the potential at x = Onm. The slope of the potential barrier,a, was changed
from a = 0.2 rad to @ = 1.5 rad. The total length of the potential barrier is 100nm. This
is longer than other barriers studied to allow for the range of values ofa. The longer the
potential barrier is, the more a can be varied. Fig. 3 shows the phase angle, ¢(FE), as a
function of the slope, a.
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Figure 3: Shift of phase angle ¢(FE) of Changing Slope « Potential computed from ¢11(E)
matrix element



Potential Barrier
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Figure 4: Position of the barrier changing from x = Onm to x = —10nm

In the second step of the preparation, the slope was set a a constant o = v/2/2 rad.
The x position of the start of the barrier was varied. Initially the beginning of the barrier
was at £ = Onm and we iterated until the beginning of the barrier was at x = —10nm.
Fig. 4 shows the initial and final potential barriers against which we bounced energy.
Energy beams were sent to hit the barrier at x = Onm every time so as not to introduce
any extra phase shift from one beam traveling further than any other. In order to hit the
barrier at a constant spot when the barrier position was changing, we had to scan through
different energy levels. The energy of the beam varied from F = Oev to E = 19.9¢V. Fig.
5 is a plot of the phase angle, ¢(F), as a function of the energy of the beam.
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Figure 5: Shift of phase angle ¢(FE) of Moving Barrier Potential computed from ¢11(E)
matrix element
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Figure 6: Hyperbolic Tangent Potential Barrier. V;, = 0eV and Vi = 20eV. The barrier
is 20nm wide

For the final step before analyzing the washboard potential, energy beams were bounced
of a hyperbolic tangent shaped potential barrier. The barrier was vertically displaced 10eV
so there would be no sign change in the energies. The width of the barrier was decreased
from 20nm to 10nm. In the regions which were removed, the asymptotic potential was
not changing. The asymptotic potentials are Vi, = 0eV and Vi = 20eV. Fig. 6 shows the
potential. Energies scanned were from E = 0eV to £ = 19.9¢V. Fig. 7 shows the change
in phase angle, ¢(E) as a function of the energy scanned in.
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Figure 7: Shift of phase angle ¢(F) computed from ¢;;1(F) matrix element



3 Procedure

In looking at Figs. 3, 5, & 7, we observe that all of the shifts in phase angle ¢(E)
are smoothly varying and exhibit no sudden changes over the respective independent
parameter. Since the shift in phase angle ¢(E) is now reasonably well understood, it
had come time to move onto bigger and better things. We bounced energies against a
washboard potential, previously shown in Fig. 1. When there is a ‘quasi-stable’ bound
state in the potential “well”, there is a resonance in the reflection amplitude, r(E) such
that the phase angle ¢(FE) undergoes rapid shifts near the energy of the state. A ‘quasi-
stable’ bound state means that the lifetime of the state is not infinite and it will decay
away. The ¢11(FE) matrix element has the form:

t1(E) = e~|(E — Fo) — i(h/2)] 1)
so ¢(FE) has the form
$(E) = 0(F) + tan™! ( Ehj/ ;()) (2)

0(E) is slowly varying, so the change in ¢(F), after removing df(E)/dE, can be ap-
proximated by the Lorentzian line

do(E) _ h/2 -
dE ~ (E— By + (h/2)?
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Figure 8: Shift of phase angle ¢(F) for Washboard Potential computed from t11(F) matrix
element

As with the previous potentials, the energy of the beam was scanned through the entire
energy of the potential. Fig. 8 shows the shift in ¢(F) as a function of energy. We observe
that the graph is rather smooth, with a slight “bump” in the graph, occuring just below
E = 8eV. We then narrowed our energy range to 7.75 < E < 8.0eV and scanned the
potential again. Fig. 9 shows the phase angle plotted against the decreased energy range.
The sharp change on the graph, which is not present in any of our “test potentials”, shows
a resonance and indicates the existence of a quasi-stable bound state. We recognize that



there is a second “bump” in the potential, around £ = 12¢V, but this is due to an excited
bound state, and the author of this paper is only concerned with the ‘ground’ bound state.
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Figure 9: Shift of phase angle ¢(E) for Washboard Potential with cropped Energy range
computed from ¢11(E) matrix element

The real and imaginary parts of t11(E), a(E) and b(E) respectively, are plotted in Fig.
10. Their zero crossing points indicate that yes, there is a resonance in our area of interest.
The closer the crossings are to each other, the sharper the resonance is.
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Figure 10: Real and Imaginary parts of the ¢;;(E) Matrix Element with arbitrary scaling.



4 Analysis

We can write a(E) and b(F) in the form
a(E) = a(E)E-E) 1)
b(E) = B(E)E - Ei) (2)
where a(E) and S(E) are the slopes of the lines and E, and E; are their zero crossings,

respectively. «(FE) and G(E) are weakly dependant on F, so near E, and E; we can ap-
proximate them to be constant, and not be functions of F£. Because of this weak depen-

dence,

[t (B)? = a(E)*+b(E)® 3)
[t (E)? = (o®+ ) (E — E+0)* + (h/2)%] (4)

The inverse of this has the Lorentzian shape, seen in Fig. 11.

1 _ const (5)
i (E)? (B - E+0)+ (hy/2)*
where
1
const = T (6)
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Figure 11: |t;1(E)|? and it’s inverse in arbitrary units, as functions of Energy

The peak, Fy, and halfwidth, hvy/2, of the Lorentzian line are given by

2E’r + ﬁ2Ei
Bo=" iy ¢

_ | aB(E — Ei) |
h7/2 - a2 + /32 (8)



These equations are the weighted averages of the zero-crossings of the real and imagi-
nary parts of ¢11(E). From Fig. 10 it was calculated that E, = 7.873eV and E; = 7.838eV.
From Fig. 11, we calculated that Eg = 7.86925¢V. Using Fig. 10 again, the slopes of
a(F) and B(F) are « = —50.91 and 8 = 17.46, in arbitrary units. Using these values, and
our calculated values for F, and E;, we calculated Ey to be 7.86932eV . Their agreement
shows that the calculations for a(E) and B(E) are reasonable. Using them, we calculated
firy/2 = 0.01074eV. This leads to v = 5.1947x10'2s7!, which means that the lifetime of
the state is 1.925x10~ 3.

5 Conclusions

For reflecting potentials that possess bound states, the phase shift in the ¢;;(E) ma-
trix element goes through a rapid change of 27 radians when the incident energy passes
through a quasi-bound state. This indicates the presence of a reflection resonance. The
shape of 1/|t11(EF) can be well approximated by a Lorentzian. This Lorentzian can be
computed from the real and imaginary parts of ¢11(E). The energy of the quasi-bound
state can be calculated from the Lorentzian, as well as the lifetime of this state. This has
applications in differential spectroscopy.
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