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     In our description of nature, isolating our view to individual particles does give us enough 

descriptive power to describe our reality.  An accurate description requires the introduction of a 

quantum field concept. In order to better understand the idea of fields in quantum mechanics, I 

decided to research some of the basic formulations of quantum field theory (QFT).  The issues 

and formalism I’m going to talk about in this paper are all referenced from a very user friendly 

text in QFT by Robert Klauber.  Throughout this paper, I am going to mention quantum 

mechanics (QM) versus QFT in several instances and I should clarify now what I mean by the 

two terms QM and QFT.  When I refer to QM, I will be talking about quantum mechanics prior 

to the introduction of quantum field theory into the modern physics mix; QFT is the quantum 

mechanical framework with the new field concept.  This paper will focus first on the necessity of 

the field introduction to quantum mechanics, then discuss first and second quantization of 

classical entities, and finally the paper will end after a more detailed look at the Klein-Gordan 

field equation.

     To understand why QFT is necessary, we first have to look at its strengths and shortcomings. 

Quantum mechanics has been immensely successful in describing how nature treats matter.  Our 

understanding of reality was thrown a massive curveball when it was discovered that particles 

were no longer well defined specimens or even particular. Despite the initial shock, this 

interpretation of our universe led to a very rich mathematical framework in which we could 

accurately detail the evolution of various particle states in specified potentials.  Yet, as mentioned 



above, QM has its shortcomings.  One of these failings is that the theory could not describe an 

actual transmutation of particles such as what happens in matter-antimatter annihilation.  A 

particle state bound in the potential of another particle state was certainly doable within the 

framework of the theory, the hydrogen atom wave equation being one of the biggest successes of 

QM, but the actual creation of a photon from an electron-positron interaction and then the 

recreation of an electron-positron pair from said photon was problematic for the early quantum 

theory.  It is precisely that kind of interaction problem which QFT aims to solve, and the theory 

does so by looking to quantize classical fields much as the young quantum mechanics quantized 

classical particles.

     The method by which QFT goes about quantizing the fields from classical theories is a 

procedure called second quantization.  The natural question to ask here is, “If this is second 

quantization, then what was first quantization?”  First quantization is what took place when QM 

quantized classical particles.  From a mathematical point of view, the whole first versus second 

quantization terminology is an exercise in semantics; the procedure for both is largely the same. 

The difference between the two quantizations lies in the physical meaning of the terms that we 

are dealing with rather than in the mathematical structure.  First quantization deals with physical 

parameters that I like to call isolated properties.  I call them isolated properties because these are 

values that we can directly measure when we look at a single, “isolated” quantum state.  So this 

would include such things as momentum, mass, spin, position, etc.  Now to follow through 

conceptually to second quantization: particles are, in a sense, isolated entities and so could be 

quantized by looking at isolated properties.  Fields, on the other hand, are distributed throughout 

a region and so it would seem to be a good idea to look at distributed properties if we want to 

quantize a classical field.  Distributed properties is the term that I use to describe physical 



entities which arise only when you consider several particles or states at once.  The best 

examples of these kinds of properties are densities.  This definitely makes sense considering that 

we know that fields can be described with the densities from a few well know classical 

arguments, such as Gauss’s Law:

 ∙E= ρϵ0 .

     By using distributed properties instead of isolated properties, we can create a whole set of 

field equation versions of very familiar quantities, such as Lagrangians and Hamiltonians.  From 

this point, using the Poisson Bracket   commutator relationship that we have talked about in 

class, the quantum interpretation of a field manifests quite naturally.  Take, as an example, the 

field equivalent of the position and momentum relationship.  Let φ(x) represent the field strength 

at a particular position x and let π(x) represent the field’s canonical momentum density at the 

point x.  These two values are canonical values, where φ plays the role of the generalized 

coordinate and π of the generalized momentum.  With these two variables so defined, I will now 

proceed to demonstrate how the Poisson brackets and commutators behave and from there it will 

be fairly clear that the typical quantum relationship between the Poisson brackets and 

commutators is upheld.

Derivation 1: Possion Brackets and Commutators

ϕ, π=dϕxdϕx0dπxdπx0-dϕxdπx0dπxdϕx0=δx-x0   (Eqn. 1)



For the quantum commutator, the momentum will assume an operator form, just as in the particle 

arguments:

ϕ, π=ϕπ- πϕ=ϕπ- πϕfϕ

f(φ) is a test function that I introduce so that I can go through the operator arithmetic.  Once all of 

the work is done, I will drop the test function term.

Noting that π=ℏi∂∂ϕ, I can say that

ϕ, π=ϕℏi∂∂ϕ(x0)f(ϕ)- ℏi∂∂ϕ(x0)ϕf(ϕ)

= ϕℏi∂f∂ϕ-ℏifϕδx-x0-ϕℏi∂f∂ϕ=-ℏifϕδx-x0=iℏfϕδx-x0

Now that all of the arithmetic is done, I drop any test functions still remaining 

and find  that

ϕ, π=iℏδx-x0    (Eqn. 2)

     On comparing equations (1) and (2) we can see that they differ from each other by a 

coefficient of ℏ , and so the commutator and Poisson brackets are related in the usual way.  In 

fact, these expressions are not all that different from the particle notation, with the exception that 

there is a delta function present in the solution.  This delta function highlights the fact that we are 

considering a field that has a functional behavior defined by position.  In order to use the field as 

a canonical variable, we have to isolate our considerations to only one point in space: i.e. one 

element of the field.  In summary, quantizing a field follows very much the same formula as 

many other quantizations familiar from particle quantum mechanics.  All of the background is 



now out of the way, so I will turn to the heart of this paper: the behavior of free fields as modeled 

by the Klein-Gordan equation.

     What is a free field?  A free field is a field that has no potential acting on it, much as a free 

particle is a particle that isn’t in any potential.  Once the general equation of a free force is 

worked out, we will have a blank canvas with which to add potential effects and gradually be 

able to explain more interesting physical phenomena.  Despite the usefulness of a free field 

equation in deriving more physically relevant situations, it is a constructive exercise to pause and 

consider what a physical example of a free field would be.  We can get to a very interesting place 

if we consider that particles like electrons and quarks are excitations of “electron fields” and 

“quark fields.”  For brevity, I’m going to coin the term material fields to refer to these types 

fields collectively.  In this worldview, one could view the excitation of these material fields as 

leading to the creation of particles sharing the field’s namesake.  Should a potential be acting on 

the material field, then any particles created from the material field will be governed by the 

effective potential as well.  I should mention that this point of view is entirely my own.  An 

example of a free field is remarkably hard to find so I put together my own ideas for an 

interpretation.

     There is a lot to say about the foundational form of the free field equations.  One of the 

biggest differences between ordinary QM and QFT is that there isn’t one equation that satisfies 

all cases.  Rather, there are three equations that fill the role of Schrödinger’s equation in QFT: the 

Klein-Gordan equation (for spin-0 fields), the Dirac equation (for spin-1/2 fields) and the Proça 

equation (for spin-1 fields).  Covering all of these equations in one small term paper would be 

unrealistic, so I will focus on examining the Klein-Gordan equation as I stated at the beginning 



of this paper.  One note about these equations is that all of them are relativistic, which makes 

QFT an inherently relativistic theory.  

     The derivation of the of the Klein-Gordan equation starts by using the relativistic energy 

equation to derive the Hamiltonian:

E2=p2c2+ m2c4

Letting E→H and quantizing p p→ -iℏ∂∂xi2=-iℏ∂i2, I get the Hamiltonian:

H=-iℏc2∂i2+m2c4    (Eqn. 3)

     The ∂i2 term is written in Einstein notation so it is a sum of derivatives in all available spatial 

dimensions.  There is, however, an issue with the Hamiltonian expression in that there is an 

operator under the square root.  This issue is circumvented by squaring the operator portions of 

the time-dependent Schrodinger Equation:

iℏddt2ϕ=H2ϕ

This goes to:

iℏddt2ϕ=-iℏc2∂i2+m2c4ϕ 

     Once we get to this step, all that remains to do is rearrange the equation.  After some simple 

arithmetic, the expression for the Klein-Gordan equation is found:

∂μ∂μ+μ2ϕ=0    (Eqn. 4)

where μ2=m2c2ℏ2=m2 in natural units

and ∂μ∂μ=∂2c2∂t2-
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     The 

2 comes from the ∂i2 term in the Hamiltonian.  

     There is a very crucial distinction to be made here regarding the meaning of φ in the QFT 

version of the Klein-Gordan equation as opposed to the QM version.  In QFT, φ is not a state; 

rather φ is an operator and solving the Klein-Gordan equation in this format will yield quantum 

operator fields as its solutions rather than quantum states.  This also means that QFT assumes the 

Heisenberg interpretation of quantum mechanics, wherein the quantum wave state is stationary 

and the quantum operator that acts on the state is what evolves in time.  The nature of the 

solutions isn’t all that changes in QFT: actually calculating those solutions proceeds in a 

remarkably different fashion from the standard nonrelativistic quantum mechanics: the 

probability density is no longer a multiplication complex conjugates.  The proper way to evaluate 

the probability density for the Klein-Gordan equation requires the use of the continuum equation:

∂ρ∂t+

∙j=0

In the continuum equation, j is known as the current density and ρ is the volumetric density.  The 

idea behind deriving the probability density for the Klein-Gordan equation is to manipulate the 

time-dependent equation and get into the form listed above.  The terms that take the place of ρ in 

the continuum equation comprise the probability density we need to solve problems.  The 

probability density of the Klein-Gordan equation ends up being:



i(∂ϕ∂tϕ†-∂ϕ†∂tϕ) d3x=1

     In order to discuss results that are more unique to QFT and not simply relativistic QM, I will 

forgo a proof of this normalization condition.  Suffice to say that this difference in computation 

is not something one can simply overlook.  In fact, the normalization condition being present in 

this form ensures that the probability of a wave function is a relativistic invariant.

     A plane wave solution of the Klein-Gordan equation is:

ϕx= k12Vωk(Ake-ikx+Bk†eikx)   (Eqn. 5)

Again, as long as the φ terms here are taken to be operators and not states, then this is the Klein-

Gordan solution that will be used in QFT.  The form of Eqn. 5 is specifically for discrete wave 

solutions.  While there do exist integral versions of this solution to the KG Equation that denote 

continuous wave solutions, I will not deal with them in this paper.  The operator solutions to the 

KG equation are obtained when Hamiltonian is the energy density of a system.  Fortunately, due 

to the similarity in the mathematics of both the isolated and distributed Hamiltonian cases, the 

forms of the KG solutions are identical; only the meanings of the terms change.

     The only thing left to do is to use the plane wave solution of the Klein-Gordan field equation 

to find the form of the quantum field Hamiltonian.  The Hamiltonian is obtained by solving the 

following equation.  For brevity, I will simply state the initial equation and then give the result 

for the Hamiltonian.  The math really just involves dealing with a  lot of differentials but it can 

get pretty messy looking:

H00= ∂ϕ∂t∂ϕ†∂t+

ϕ†∙



ϕ+μ2ϕϕ†d3x

=kωkNak+12+Nbk+12  (Eqn. 6)

where Na=a†kak and Nb=b†kb(k)    (Eqn. 7)

Eqn. 7 details Na and Nb .  The N’s are number operators that explain how many “a” particles and 

how many “b” particles exist with a certain 3-momentum k.  With this definition in mind, the 

meaning of the Hamiltonian in Eqn. 6 takes on a rather intuitive meaning.  The energy density of 

the field is essentially expressed using the energy of the various particles present within the field. 

Yet, there remains one other interesting quality about Eqn. 6, the ½ constants.  Should no 

particles be present in the field, the Hamiltonian density will still have a nonzero value because 

of these constants.  The ½ terms thus get the name zero-point energy.  This the same energy that 

lead many to point to a quantum foam of particles popping into and out of existence at small 

distance scales.  

     The equations described above are only free fields and, even more pointedly, for spin-0 

particles.  QFT is obviously far more expansive then what I was able to capture in this paper. 

The largest implication from the ideas discussed so far is that, despite how foreign and 

threatening the concept of fields may initially seem to be, the equations are very relatable to 

“ordinary” QM by focusing on the similarity of the foundational mathematics and by making use 

of the Poisson bracket commutator relationship that shows up ubiquitously in many quantum 

calculations.  Though the results of QFT equations are operators, the use of these operators adds 

a richness and predictability to physics that would otherwise be lacking.  
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