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Coherent 2D resonance Raman spectroscopy is a method used to distinguish the 
vibrational-rotational peaks that are usually congested in 1D spectroscopy. Here we 
simulate the transitions for C2 in the Swan band and generate the wavelengths in the 
range 500

! 

"λ3

! 

"515 (nm) and 458

! 

"λ3

! 

"475 (nm).  
 
I. INTRODUCTION 

Coherent 2D resonance Raman spectroscopy 
(C2DRRS) is a technique that allows the 
separation of rotational-vibrational peaks to 
curves according to vibrational sequence, 
rotational quantum number, and selection rules. 
This is a great advantage over 1D spectroscopy, 
since the electronic spectra of gaseous molecules 
turn out to be very congested with overlapping 
energy transitions. This is a result of the large 
number of transitions that exist between different 
rotational-vibrational energy levels. Also, even 
where one can resolve the necessary peaks, it is 
very difficult to assign them transitions. Hence, 
by using 2D spectroscopy overcomes many of 
these problems due to its capabilities of 
distinguishing between transitions. 

In this paper, we will explain the theory behind 
2D resonance Raman spectroscopy and display 
the results of simulations that were done for C2  
in the Swan band. We will derive the necessary 
formulae for the energies of transitions from the 
individual energies of the levels of transitions. 
Since we are interested in the transitions between 
states d3Πg and a3Πu, the necessary constants 
were taken from the NIST chemistry database. 

II. THEORY 

In C2DRRS, we investigate transitions between 
states d3Πg and a3Πu. In Figure 1, the energy 

levels can be seen, where level c is a virtual level 
and the 3rd arrow is the narrowband light, while 
the others are for the broadband lights.  Level b 
represents a rotational-vibrational level in the 
lower electronic state, whereas d is a rotational-
vibrational level in a higher electronic state.  

The energies of these states are given by 
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Figure 1. Energy transitions in C2DRRS. Level c 
is a virtual energy level. 

The selection rules are that ΔJ = 0,±2 for rotations 
and Δv = ±1 between vibrations in the same 
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electronic state. These selection rules arise from 
the rigid rotor and harmonic oscillator models. 
Hence if we ignore the D term in F(J) –as it is 
very small compared to the B term - the energy 
difference between two levels becomes 
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The difficult part of preparing the simulations 
was figuring out between which energy levels the 
transitions are occurring. The notation used in 
the paper written by Chen et al.1 was, at first 
look, quite difficult to decipher. However, 
through correspondence with Professor Peter C. 
Chen, certain details were illuminated enough for 
a physicist to understand chemists’ notation. 

In Table 1, the basic derivations of the ω3 and ω4 
rotational components of the energies can be 
seen. The important fact to know about the 
derivations is the rotational quantum number J is 
taken as the ground state (level a in Figure 1) 
rotational quantum number and all other levels 
are marked with rotational quantum numbers 
according to the selection rules. For example, in 
the case of ΔJ = -2, we have for the ω3 transition: 
level a is J, level d is J - 1 and level b is J – 2 
(Figure 2)2. This information is listed in Table 1 
for all types of transitions. 

The J numbers alone are capable of giving us the 
wide parabolas that are associated with the ΔJ = 
±2 transitions and will give us straight lines 
forthe ΔJ = 0 transitions. This is a good first 
approximation. However to observe the actual 
shapes of the narrow parabolas, one needs to 
figure out between which vibrational levels these 
transitions are occurring, too. For the Swan band 
we picked the 

! 

v = 0""1""1'" 0" transition. 
This notation denotes a transition from level a to 
b to d and back down to a. This is skipping the 
transition between a and c, and c and b. Hence,  

for all ω3 components we have 
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v'=1,v"=1 and for 
all ω4 components, 

! 

v'=1,v"= 0. 

 

 

 

Figure 2. The rotational quantum numbers of the 
energy levels of the transition ΔJ = -2. 

The J numbers alone are capable of giving us the 
wide parabolas that are associated with the ΔJ = ±2 
transitions and will give us straight lines forthe ΔJ 
= 0 transitions. This is a good first approximation. 
However to observe the actual shapes of the 
narrow parabolas, one needs to figure out between 
which vibrational levels these transitions are 
occurring, too. For the Swan band we picked the 

! 

v = 0""1""1'" 0" transition. This notation 
denotes a transition from level a to b to d and back 
down to a. This is skipping the transition between a 
and c, and c and b. Hence, for all ω3 components 
we have 

! 

v'=1,v"=1 and for all ω4 components, 

! 

v'=1,v"= 0. This means that even though we’re 
dealing with 3 different energy levels, we have 
only two sets of parameters. The levels a and b 
belong to the a3Πu  energy level and d belongs to 
the d3Πg level. 

Once all the quantum numbers are determined, 
using the constants given in the NIST Chemistry 
Database, we can plot the ω3 values against ω4. All 
these values are in cm-1s, which chemists use as an 
energy unit. This is simply the reciprocal of the 
wavelength that is measured. Hence by taking the 
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 reciprocal of our final calculated values, we can 
get the wavelengths and plot λ3 versus λ4. 

ΔJ = -2 a = J 

! 

"3 = F '(J #1) # F"(J # 2)  

 d = J – 1 

! 

"4 = F '(J #1) # F"(J)  

 b = J – 2  

ΔJ = 0 a = J 

! 

"3 = F '(J +1) # F"(J)  

(R R) d = J – 1 ω4 = ω3 

 b = J  

ΔJ = 0 a = J 

! 

"3 = F '(J #1) # F"(J)  

(P P) d = J + 1 ω4 = ω3 

 b = J  

ΔJ = +2 a = J 

! 

"3 = F '(J +1) # F"(J + 2)  

 d = J + 1 

! 

"4 = F '(J +1) # F"(J)  

 b = J + 2  

Table 1. Column 1: Transition rotational 
selection rules. Column 2: Rotational quantum 
number assigned to the energy levels a, d and b 
from Figure 1. Column 3: The rotational energy 

components for ω3 and ω4 transitions. 

III. SIMULATIONS 

Figure 3 (a) and (b) show the results of the 
simulation for the Swan band of C2. Two 
separate parabolas are observed. The wide 
parabola belongs to the ΔJ = ±2 transitions, 
whereas the narrow parabola belongs to the ΔJ = 
0 transitions. Jmax was set to 40. 

The addition of the α term of Bv to the energy 
calculations allows the formation of the narrow 
parabola; without this term, there would be a 
straight line rather than a parabola for the ΔJ = 0 
transitions.  

 

 

Figure 3. Top: Graph of ω3 vs. ω4. Bottom: Graph 
of λ3 vs. λ4. 



The D term of F(J) is on the order of 10-6,  
hence very small compared to the B term. So 
they have been ignored in our calculations. 
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Table 2. The constants used in simulations.3 

IV. RESULTS 

The simulations we have shown the results of 
have the capability of separating overlapping 
peaks of common spectroscopy. We have seen 
that rovibrational peaks form the same 
vibrational sequence are on the same parabolas, 
with increasing J values starting from the point 
of intersection between curves. 

The simulations that were prepared successfully 
reproduced the results of Chen et al. (2005). It 
can be seen that this method allows to 
successfully predict the spectrum of C2 and 
separate the transition peaks according to 
vibrational sequence, rotational quantum number 
and selection rules. 
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