
 1 

Saha’s Equation: Dissociation and Ionization of Hydrogen 
D. Meral 

Quantum Mechanics III, Homework I, 10.15.2009 
 

ABSTRACT 
 

In this report, we use Saha’s equation to find the equilibrium 
concentrations of molecular hydrogen H2, atomic hydrogen H and ionized 
hydrogen p+ + e- on the surface of a star.  We will look at temperatures 
ranging from 0K to 40000K and we will also explore several different 
densities for the star’s surface. Afterwards, we will use the same method 
to look at the behavior of an organic compound that goes through a similar 
reaction, called the decarboxylation of acetoacetic acid. We will scale the 
density and the temperatures accordingly. 

 
1. INTRODUCTION 

 
A. The Saha Equation 

The Saha equation is a formula that allows us to see the relationship between the relative 
concentrations of the substrates in a reaction and the ambient temperature and the density 
of particles. We can derive this equation by using the partition function. 
Given the dissociation reaction: 
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the partition function can be calculated as 
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where N is the number of AB molecules before dissociation has started. By searching for 
two successive terms that are closest to each other, we can find the most likely state of 
this system. This way we can avoid doing the sum, yet still extract information about the 
equilibrium concentrations of this reaction. Given N is large, we get: 
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Now, it’s a matter of writing down the individual partition functions for the particles 
involved. ZA can be written as: 
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where the first term comes from the phase space of the coordinates of the particle and the 
second term is the internal partition function of that particle. ZAB and ZB can be written in 
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a similar fashion. Plugging this formula into the above one along with the other partition 
functions, after some more manipulation we get the Saha equation: 
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B. Dissociation and Ionization of Hydrogen 
Now, the above formula can be used as a template for the reactions of interest for this 
write-up. The dissociation of molecular hydrogen and the ionization of atomic hydrogen: 
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Letting the initial concentration of H2 be n0, we can write down the concentration of all 
particles of this reaction as: 
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Hence, the two Saha equations are: 
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Plugging in the internal partition functions and taking the natural logarithm of both sides, 
we get: 
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where E1 = -13.6eV and E2 = -4.476eV. Since the environment we’re interested in is the 
surface of a star we will use ~1017 particles per cm3 for the particle density n0. 
We expect the dissociation rates to increase as the temperature increases. Hence, at 
extremely high temperatures we expect both x and y to be ~1, whereas at low 
temperatures both factors will be close to 0. 
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C. Decarboxylation of Acetoacetic Acid 
 For the biological system that was chosen, we have the reaction: 
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where acetoacetic acid dimers connected by two hydrogen bonds with a bond strength of 
~5kcal/mol (which translates to 6.948*10-13 ergs for two hydrogen bonds) breaks down to 
two acetoacetic acid molecules, which later on are carboxylated, meaning one CO2 
molecule is extracted from each acetoacetic acid. 
 Acetoacetic acid, a synthetically useful molecule, belongs to a group of chemicals 
named, β-keto acids (that belong to the larger group of carboxylic acids), which have the 
structure: 
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RC(O)CH
2
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where the oxygen atoms in parentheses are have a double bond with the carbon atom 
coming before them. The product of this reaction, acetone, is used as an active ingredient 
in paint thinners and also is present in the human body in small amounts. Compared to 
carboxylic acids, β-keto acids decarboxylate easily due to the presence of a transition 
state that involves creating an enol, which later tautomerizes to a methyl ketone. This 
allows this specific reaction to have a relatively low temperature threshold. 

The formulas we have derived for the previous reaction transfer nicely to this 
reaction. The new constants are given in the methods section below. As for the internal 
partition functions, we will limit our calculations to the dissociation energies of these 
reactions. 

 
2. METHODS 

 
Since the equations we have so far derived are nonlinear in nature, numerical 

methods were necessary to find the equilibrium concentrations of the substrates. The 
FindRoot function in Mathematica can be used to numerically solve a set of nonlinear 
equations. This algorithm uses Newton’s method, which, given an initial guess, utilizes 
the Jacobian or a finite difference approximation to solve for the root of the step in 
process using a locally linear model.  

Due to the wide range of temperatures, 0K to 40000K, Do[] was used to loop 
over the calculations of FindRoot. Given that the values we’re looking for will be 
between 0 and 1, it was decided that choosing a precision goal of 5 significant figures 
was reasonable. This worked well for the temperature range that was chosen. 

One of the problems that emerged in the programming phase was related to the 
initial guesses. If the initial guess is close to the actual root, then Newton’s method can 
converge on a result very quickly. However, upon trial, it was seen that when the guess is 
not close to the actual root, Mathematica has a hard time pinning down reasonable 
results. Hence, a simple adjustment was made to improve on this problem by splitting the 
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loop into several different pieces with different initial x and y guesses chosen 
appropriately for each temperature interval. This greatly improved the solutions. 

All constants were in c g s units:  
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 Using the above constants we first plotted x and y values for a temperature range 
of 0K to 40000K. Then, by varying the particle density n0 we observed the effects on the 
x and y values, again plotted in terms of the temperature. 
 Later, using the same method we looked at the decarboxylation of acetoacetic 
acid with the constants: 
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3. RESULTS 

 
 First, for the hydrogen reaction, the effects of temperature on the equilibrium 
positions of the reaction were investigated. We used n0 = 1017 cm-3 as our starting number 
density. In Figure 1, the x values have been plotted against the y values of the reaction in 
a parametric fashion. It can be seen that as x increases from 0 to 1 with an increase in 
temperature, there’s barely any change in y. This means that atomic hydrogen does not 
become oxidized up to a relatively high temperature, which we can see also in Figure 2. 

In Figure 2, we plot the x and y values against temperature. It can be seen that x 
has a steep increase between 2000K and 3000K, whereas y starts increasing around 
8000K and keeps rising until about 30000K. This agrees with our expectations, since it 
requires more energy to ionize atomic hydrogen than to break molecular hydrogen into its 
components. 
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Figure 1. Dissociation of hydrogen: A plot of x and y 

values for n0 = 1017 cm-3. Each point represents a different 
temperature. 

 

 
Figure 2. Values of x and y plotted against temperature. 
The blue curve is for x and the pink curve stands for y. 

 
For purposes of exploring the effects of different particle density values, we repeated our 
method for the same reactions for different values of n0. Above, in Figure 3, you see three 
graphs, respectively for n0 = 0.5*1017 cm-3, n0 = 1018 cm-3 and n0 = 5*1018 cm-3. It can be 
seen that as we increase the particle density, the equilibrium position shifts towards the 
left hand side of the reactions. In other words, for the y values to reach a value ~1, the 
temperature needs to be higher for higher densities. This is expected as increasing the 
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density of the gas means that we are increasing the pressure, forcing more collisions to 
take place. This pushes the equilibrium position to the left of the reaction. 

 

 
Figure 3. Reaction coordinates plotted against temperature 
for different particle densities; n0 = 0.5*1017 cm-3, n0 = 1018 

cm-3 and n0 = 5*1018 cm-3. 
 

 For the decarboxylation of acetoacetic acid, our temperature range is much 
narrower. Again, we start at 0K and go up to ~1400K. We start seeing almost complete 
dissociation at ~1000K. At ~500K, practically all the hydrogen bonds are broken, hence 
we have no more dimers in the solution. Around ~1000K, almost all the acetoacetic acid 
molecules have been decarboxylated. 

In this reaction, we are dealing with smaller energies and heavier molecules. 
Compared to the differences in energies between the dissociation of molecular and 
atomic hydrogen, we have smaller energy differences, hence the reaction coordinates are 
closer to each other in value at even low temperatures. We start observing an increase in 
y at around x = 0.6, which is quite different from the previous reaction. 
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Figure 4. Decarboxylation: A plot of x and y values for     
n0 = 6.022*1020 cm-3. Each point represents a different 

temperature. 
 

 
Figure 5. Values of x and y plotted against temperature. 
The blue curve is for x and the pink curve stands for y. 

 
 Saha’s equation can be applied to a wide range of problems, from the 
compositional structure of stars to chemical reactions taking place in biological 
environments. The hardest part of this method is calculating the internal partition 
functions, however since we can truncate the sum in the partition function and limit it to 
the dissociation energies of the reactions, this method is still very handy at finding the 
equilibrium positions of the chemical reactions. 
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