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 Quantum Picture of the Josephson Junction 

             ------A promising candidate for qubits in quantum computing 
 

In this project, I introduce the idea of Josephson Junction, which has drawn 

great attention of researchers with its potential to server as a quantum bit in a 

quantum computer. I use the approaches we discussed in class to study the 

quantum picture of a current-biased Josephson Junction. The lowest two 

states of such a Junction are singled out as two states of a quantum bit. I 

calculated the tunneling rate for each state and explain how we determine 

which state a qubit is in, with the information about the tunneling rates of 

each state. Because of the existence of thermal noise, ultra-low temperature 

is required (usually around 10 mk) if we want to observe these quantum 

properties experimentally. There are many other issues that should be 

considered when we study such a system, such as electromagnetic isolation 

and decoherence and dissipation of the Junction. All these are not taken into 

account when I sketch the quantum picture of the Junction here. 
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Quantum Picture of the Josephson Junction 
------A promising candidate for quantum bits in quantum computing 

 
 
1. Physical Properties of a Josephson Junction 
 
Electrons in a superconductor form Cooper pairs* for temperatures below the critical 
temperature of the superconductor[1]. These pairs are in a collective motion 
corresponding to the ground state of the system. The state can be described with a wave 
function: 

 ( , )( , ) ( , ) i r tr t A r t e θΨ =  (1.1) 

The phase of the wave function is coherent throughout the superconductor. 
 
If two superconductors are separated by a very thin layer of insulator, a Josephson 
Junction is formed (Fig.1). When the insulator thickness is small enough, the electronic 
wave functions from the two sides can overlap. The cooper pairs in these two 
superconductors can tunnel to the other and the phase of the wave functions in two 
superconductors are correlated. 
  

If the phase difference is 1 2γ θ θ= − , the relation between the tunneling current I  

flowing through the junction and the voltage V across the junction is given by 
Josephson Relations[2]: 
 

 0 sinI I γ=  (1.2) 

 0

2
dV
dt
γ

π
Φ

=  (1.3) 

Where 15 2
0 2.07 10

2
h T m
e

−Φ = = × ⋅  is the flux quantum**, and 0I  is the critical 

current of the junction.  
 
* Animations of the formation of Copper Pairs and how they contribute to 
superconductivity can be found at: 
http://www.chemsoc.org/exemplarchem/entries/igrant/bcstheory_noflash.html 
 
** Flux quantum: The magnetic flux in a superconducting loop is quantized. The allowed 

flux is: 0n ⋅Φ ,where 0,1,2...n =  
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In an actual Josephson Junction, there is a capacitance between the two superconducting 
plates, and a shunt resistance parallel to the Junction. In this model, which is called RCSJ 

Model, a Josephson Junction can be indicated as Fig.2. The cross is the bare Junction; bI  

is the total current flowing through, which is called Bias Current.  
 
Thus, the equation for the total current is: 

 0 0
0 sin( )

2 2b j
VI I CV I C
R R

γ γ γ
π π
Φ Φ

= + + = + +  (1.4) 

in which the Josephson Relations are plugged. 
 
We study Josephson Junction as a Phase Qubit, which means the states of the qubit (0 

and 1 in classical computer) are indicated by different states of the phase (γ )of the 

Junction. I am going to make an analogy between the problem of a Josephson Junction 
and a dynamic problem using equation 1.4. 



                                     Term Project                              Yi Yang 

 - 3 -

 
 

2. Dynamic analogy for a Josephson Junction 
 

Consider a particle with mass 
2

0

2
m C

π
Φ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 moving in a potential:  

 ( )( )0
0( ) cos

2 bU I Iγ γ γ
π
Φ

= − +  (2.1) 

subjected to a damping force
2

0

2 R
γ

π
Φ⎛ ⎞

⎜ ⎟
⎝ ⎠

. The equation of motion is: 

 
2

0( )
2

dUm
d R
γγ γ
γ π

Φ⎛ ⎞= − − ⎜ ⎟
⎝ ⎠

 (2.2) 

which is exactly equation 1.4. So, the problem of phase state of a Josephson Junction is 

analogized to problem of motion of a particle with displacement γ  in potential ( )U γ , 

subjected to a damping force.  
 
We study this potential quantum mechanically. Note that the potential depends on the bias 

current bI , The sketch of the potential for 00.1bI I= , 00.3bI I=  and 00.9bI I=  is 

shown in Fig.3. 
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Fig.3 

Through adjusting the bias current bI , we can control the deepness of the well, thus the 

number of bound states.  
 
3. Eigen states of the tilted wash board potential 
 

When a Josephson Junction is used as a qubit, one need to find the bias current bI  such 

that there are only several eigen states existing in the well. As we discussed in class, we 
can discretize the potential and diagonalize the Hamiltonian matrix to get the eigen values 
and eigen functions. The Hamiltonian of this system is simply: 

 
2

2 ( )
2

dH U
m d

γ
γ

= − +  (3.1) 

where ( )U γ  depends on the bias current bI .  

With the typical parameter: 0 10 ; 1 ; 0.15I A C pF L nHµ= = = , my calculation showed 

that when 00.97bI I= , there are only 4 bound states in the well, which is a good 

condition where we can regard the Josephson Junction as a qubit. The eigen energies of 

the bounded states are ( I chose ( 0)U r = as the zero potential):  

-21
0 =-5.0314563659704 10E × ; 

-21
1=-5.02280861941517 10E × ; 

-21
2 -5.01468472553116 10E = × ; 
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-21
3 -5.00738407077634 10E = ×  

Let us label the energy space in frequency between i-th state and j-th state as: ijω , the 

energy spaces are: 

10 82GHzω = ; 

21 77GHzω = ; 

32 69GHzω =  

Unlike the Harmonic Oscillator Potential, the energy spaces of the wash board potential 
are not equal. This is a significant quality of this system that makes it a candidate for 
qubit, as discussed later.  
 
The potential in my calculation and the eigenfunctions for the 4 lowest states are shown 
in Fig. 4. The eigenfunctions look similar with eigenfunctions of Harmonic Oscillator 
Potential. However, one can see that on the right edge of the functions for state 2 and 
state 3 the functions are no longer zero. In fact, since right barrier of the well is not 
infinitely high (actually very low in this case), there must be a transmission rate (or 
quantum tunneling rate) for each state. From the sketch of the functions, we can roughly 
tell that the tunneling rate of state 2 and 3 are much larger than that of state 0 and 1. 
Actually, this difference in tunneling rate is another basis for our effort to design a qubit 
with a Josephson Junction. In next section, I am going to calculate the tunneling rate of 
each state and explain how to measure the state of such a qubit through the quantum 
tunneling of it.  
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Fig.4a  Potential (Ib=0.97*Io)
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Fig.4b Eigen function of State 0
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Fig.4c Eigenfunction of State 1
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Fig.4d Eigen function of state 2
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Fig.4d Eigen function of state 3

 
 
4. Tunneling rate of the states 
 

As we learned in class, for an arbitrary potential ( )V x E> , the tunneling rate is: 

 
2 ( )

~
b

a
K x dx

T e
− ∫  (4.1) 

where ( )2

2( ) ( )mK x V x E= − ; ( ) ( )V a V b E= = , a b< . This relation can be derived 

from WKB approximation. I am going to calculate the tunneling rate with the approach of 
transfer matrix. As reference, the ratio of tunneling rates for higher stats to ground state 
with equation 4.1 are: 

3
1 0~ 10T T  
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6
2 0~ 10T T  

8
3 0~ 10T T  

 
We can see that the tunneling rate for higher states are much higher than those of lower 
states.  
 

I discretize the potential curve to a sequence of constant potential iV  with step length δ , 

as Fig.5 shows. Note that in the total region II, we have ( )E V γ< . And I set the lowest 

point of the well to be zero energy. Then I calculated the M matrix as we defined in 
class[3]: 

 
1cosh( ) sinh( )

sinh( ) cosh( )

i i
ii

i i i

K K
KM

K k K

δ δ

δ δ

⎛ ⎞−⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

 (4.2) 

 

where iK  represents the momentum in i-th rectangle potential: 22 ( ) /i iK m V E= − . 

Since my goal is to compare the tunneling rates for each state, instead of calculating the 
exact tunneling rates, let us assume that the momentum in region I is the same with that 

in region III: 2
0 2 /K mE= . The relation between the amplitude in region I and region 

III then becomes:  

 
2

0
1

0 0

0

11
1 11

12 1

I III
i

I III

iKA A
M M M

iK iKB B
iK

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠ ⎝ ⎠−⎜ ⎟
⎝ ⎠

 (4.3) 

where 0IIIB = and the phase matrices are ignored. The tunneling rate is 
2 2

11

1III

I

A
A t

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, 

where 11t  is the first element of the transfer matrix:  

 
2

011 12
1

0 021 22

0

11
1 11

12 1
i

iKt t
T M M M

iK iKt t
iK

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎛ ⎞ ⎜ ⎟= = ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⎜ ⎟⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠−⎜ ⎟
⎝ ⎠

 (4.4) 
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With the typical parameters listed above and 0.05δ = , I calculated the tunneling rates 
for each state.  

10
0 1.0 10T −= ×  

8
1 2.4 10T −= ×  

5
2 2.0 10T −= ×  

3
3 4.9 10T −= ×  

The results match the results from WKB approximation with 3
2 1/ ~ 10T T  and 

2
3 2/ ~ 10T T , but 2

1 0/ ~ 10T T in this calculation is slightly different from 3
1 0/ ~ 10T T  as 

in WKB approximation. Actually, there is a factor of ~ 500 if we calculate with the exact 
expressions in WKB approximation for the tunneling rate of this two state. Anyway, we 
can get the idea that the tunneling rates of higher states are much lager than those of 
lower states. 
 
The measurement of the state of such a qubit is based on the ideas that: (1) the energy 
spaces of different pairs of states are not equal; (2) the tunneling rate of the higher states 
are much larger than that of the lower states.  
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Tunneling means the system goes to the continuous running state, ie γ  keeps changing. 

According to the Josephson Relation, the system goes to a finite voltage stage from zero 
voltage stage. Therefore, people measure the voltage across the Junction to evaluate the 
tunneling. Under low temperature, where the qubit is in either state 0 or state 1, one can 

apply a microwave with frequency 10ω  to the system to determine the state of a qubit. 

Because the energy space between each two states are not equal, this microwave can only 
be absorbed when the system is in state 0. If this happens, an enhancement in tunneling 
rate will be observed. That tell people the qubit is in state 0. Another similar way to do 

this is applying a microwave with frequency 31ω  to the system. If the qubit is in state 1, 

the microwave will be absorbed, thus a significant tunneling will be observed. 
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