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Introduction: 

Within the core of a star we find a direct application of a quantum mechanical 

phenomenon, the degeneracy pressure. The purpose of the degeneracy pressure to combat the 

collapse of the star by its own gravity. Using an expression for the Fermi energy, we will 

construct a mathematical expression for the degeneracy pressure. We will then find the 

gravitational pressure due to the binding energy of a star. Next, we will examine an equilibrium 

state in a neutron star by balancing the pressures. We will examine the properties, such as the 

radius and density, of a particular neutron star of mass M=2Msun (solar masses). We will finally 

discuss the accuracy of our results based on observed values. 

Background: 

 To begin our examination, we must discuss one of the most fundamental principles in 

quantum mechanics. The Pauli Exclusion Principle, was formulated by Wolfgang Pauli in 1925 

while he was considering Bohr’s atomic model, and in order to attempt to explain the results of 

his experiments on the Zeeman Effect in atomic spectroscopy. This principle states that no two 

identical fermions (spin ½ particles) can occupy the same quantum state at the same time. The 

application of this principle to atoms, in the case of Neils Bohr, has allowed physicists to better 

explain how electrons fill orbitals around a nucleus of an atom, satisfying the different selection 

rules that atom. This paved the way for physicists to delve deeper into the study of the atom and 

examine other interactions such as the spin-spin interaction of two electrons or the spin-orbit 
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interaction. Solving these problems gave atomic physicists a closer approximation of the energy, 

for example, of non-Hydrogen like atoms. This idea of energy state filling becomes crucial when 

discussing degeneracy pressure. 

 The Pauli Exclusion Principle can also be applied to further our understanding of stars, 

black holes, supernovae, and many other celestial objects and phenomena studied in 

astrophysics. A vital application is the degeneracy pressure found in the interior of a white dwarf 

or neutron star. The degeneracy pressure is greatly needed in the interior of these stars to 

counteract the pressure due to gravity. The balance of the gravitational pressure and degeneracy 

pressure is what keeps these star stable. Without the degeneracy pressure in neutron stars and 

white dwarf stars, the pull of gravity would become too great for the thermal pressure to 

counteract, forcing the star to implode, which could possibly result in the formation of a black 

hole. Let us briefly look at some properties of white dwarf and neutron stars.  

 The two types of stars mentioned above are directly dependent on the degeneracy 

pressure because they are stars that no longer fuse elements, and thus do not burn as hot as 

larger, younger stars. This results in cooler temperatures at the core, causing the thermal pressure 

to decrease. The white dwarf star is a small, dense star with a mass less than the Chandradekhar 

mass limit of 1.44 solar masses. Many white dwarf stars are born out of red giant stars that have 

burned their fuel, and lost a large fraction of their mass. These stars have fused all of their 

hydrogen and helium, leaving an abundance of carbon and, in many cases, oxygen in the core. At 

this point, the star no longer has enough energy to fuse carbon into a heavier element so the 

white dwarf star contracts. This contraction compresses the electrons in the core into degenerate 

energy levels, forming the electron degeneracy pressure. A typical white dwarf with a mass less 
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than 1.44 solar masses will become stable after balancing the gravitational pressure due to the 

contraction, and the electron degeneracy pressure.  

More massive stars, typically greater than eight times the mass of our sun, however, are 

energetic enough to fuse elements up to iron. Fusion can no longer naturally occur in stars past 

iron, however, because it is becomes an endothermic process, thus requiring energy. When iron 

is formed, it is deposited in the core, causing the density to rapidly increase and the core to begin 

to contract inward. This causes temperatures to rise in the core to help resist collapse. The rise in 

temperature and density allows for electron capture in the core by the reaction, 

 𝑝+ + 𝑒− ↔𝑛 + 𝜈𝑒   (1) 

Both neutrinos and neutron rich matter are produced at the core of these large stars. Eventually, 

the core of these larger stars will become too massive, causing a gravitational core collapse 

supernova which, in many cases, leave behind a neutron star. These neutron stars are neutron 

rich due to reaction (1), and can weigh up to three solar masses. Neutron stars are much denser 

than white dwarf stars, which, once again, causes the core of the stars to collapse. The 

compression of neutrons in the contracting core, however, creates a neutron degeneracy pressure. 

This pressure, analogous to the electron degeneracy pressure in white dwarf stars, combats the 

gravitational collapse of the star. If, however, the neutron star is too massive (more than three 

solar masses), the neutron degeneracy pressure fails and the neutron star collapses into a black 

hole. We now see that the role of both the neutron degeneracy pressure, and the electron 

degeneracy pressure is crucial to the maintained stability of a star. We must now ask what 

neutron or electron degeneracy is, and how it forms a pressure in a star. Since these pressures are 

analogous, we will examine neutron degeneracy pressure in a neutron star’s core. 
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We have discussed earlier that the Pauli Exclusion Principle prevents two identical 

fermions from occupying the same state at the same time. Also, we know that when all of the 

lowest energy states of the neutrons in a neutron star are filled, the neutron star is at its lowest 

possible total energy. When a star contracts, the free neutrons get pushed closer together, and 

thus, by the Pauli Exclusion Principle, cannot all remain in their lowest energy states. This, 

therefore, forces the neutrons to occupy increasingly higher energy states, which, in turn, creates 

a pressure.  

This pressure can be rationalized by considering a confining potential well and by 

applying the Heisenberg uncertainty principle. In one application, Heisenberg uncertainty 

principle asserts that complementary properties of a system, such as position and momentum, 

cannot be determined simultaneously, or mathematically, that ΔxΔp≥ħ/2. Therefore, we see that 

there is a momentum, called the Fermi momentum, associated with the neutrons. As the core 

collapses and the energy states fill to higher levels, the Fermi momentum of the neutrons 

increases. The energy corresponding to this momentum, called the Fermi energy which we will 

discuss in the next section will also increase. So, with a decreasing volume and an increasing 

particle momentum, we can say that a pressure formed inside of the core of the star, and 

continues to increase as long as the volume continues to increase, and that there are degenerate 

neutron energy states. Now that we know where the pressure comes from, we can finally derive a 

mathematical expression for the neutron degeneracy pressure by non-relativistic neutrons inside 

of a neutron star. 

 

 



5 

 

Degeneracy Pressure Approximation: 

 To approximate the neutron degeneracy pressure in the core of a neutron star, we must 

first begin by finding the Fermi energy. The Fermi energy assumes a cold, and in our case, three 

dimensional space filled with N fermions (neutrons) where all of the lowest energy states are 

occupied. Then, we fill energy states up to, but not exceeding, a particular energy called the 

Fermi energy. This method is, of course, an approximation because we assume that the neutrons 

have zero temperature, which, at the center of a star, is not the case. We then assume, 

appropriately, that all states lower than the Fermi energy are filled and states higher than the 

Fermi energy are empty. We approximate that the Fermi energy in n-space is similar to the 

square well energy, 

 
𝐸𝐹 =

𝜋2ħ2

2𝑚𝐿2
(𝑛𝑥

2 + 𝑛𝑦
2 + 𝑛𝑧

2) 
(2) 

 
=
𝜋2ħ2

2𝑚𝐿2
𝑟𝑛
2 

(3) 

where rn is the radius in n-space, and nx, ny, and nz are the principle quantum numbers in three 

dimensions. We can find the total energy of every the fermions in the sphere (assuming a 

uniform spherical star) by integrating the Fermi energy over the volume of one eighth of the 

sphere. We know that the quantum numbers nx, ny, and nz are positive integers, so we only need 

to use the positive axes, which corresponds to one eighth of the sphere. We find that the total 

energy is, 
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𝐸𝑡𝑜𝑡 =

𝜋3ħ2
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𝑟𝑛
5 

(5) 

Then two corresponds to two spin states for the fermion. Next we find the total number of states 

available to the fermions within the radius of the Fermi energy. If we consider a sphere of radius 

rn, the number of available states in one eighth of that sphere would be, 

 
𝑁 = (2)(

1

8
)(
4

3
𝜋𝑟𝑛

3) 
(6) 

 Where we have two spin states, and the rest is the volume of the one eighth of the sphere. We 

can then solve for the radius in equation (6) and plug in to equation (5) to find the total energy 

and the Fermi energy as a function of the number of particles. 
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We can then replace L3 from the square well by the volume, V, using the equation L3=V, so 

equations (8) and (9) become: 
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(11) 

Finally, we can use a thermodynamic relation to find the pressure from the total energy 

expression in equation (11). If we assume constant entropy and constant particle number in the 
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fundamental equation, we can approximate the pressure, P, by taking the derivative of the energy 

with respect to the volume. Therfore, we obtain: 
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(12) 

 

(13) 

This is a general approximation for the degeneracy pressure for fermions in the center of a 

uniform, spherical star. For a white dwarf star, we stated above that the electron degeneracy 

pressure balances the gravitational collapse, so equation (13) becomes: 
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)

5
3
 

(14) 

This is a calculation of the electron degeneracy pressure, where me is the mass of an electron and 

Ne is the number of electrons. Similarly, for a neutron star, we can find the neutron degeneracy 

pressure by substituting into equation (13) the neutron mass and the number of neutrons in the 

star. We obtain: 
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(15) 

 

Gravitational Pressure approximation: 

 As stated earlier, a gravitational pressure is exerted on the star due to its own mass, which 

helps form the electron or neutron degeneracy pressure. To solve for the gravitational pressure, 

we must first find the gravitational binding energy. This can be found (for a uniform sphere) by 

considering two masses in the star. We must first consider a mass in the shape of a spherical 
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shell in the star with mass ms=4πr2ρ, where ρ is the density of the shell, and the rest is the surface 

area element. This mass shell has a gravitational attraction to all of the material it surrounds of 

mass of mi=4πr3ρ/3. We can then plug these two masses into the formula for gravitational 

potential energy, and, assuming constant ρ, we integrate over every shell in the star’s radius. We 

obtain an equation of the form: 
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(17) 

 

(18) 

Where we use M=4πr3ρ/3 for the mass of the star. This, again, is an approximation of the 

gravitational binding energy inside of a star because we assume that the density of the material 

inside of the star is constant. Using this approximation and equation (12), we can calculate the 

pressure due to this energy. We rewrite (18) in terms of the volume V and differentiate: 
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(20) 

The mass of the star is mainly comprised of the number of nucleons in the star, N, multiplied by 

the masses of those nucleons, MN. If, however we know the mass of the star, we can leave the 

mass as M. Thus, we have an expression for pressure due to gravity and now we must relate that 

to the degeneracy pressures in our neutron star. 
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Neutron Star Balancing Act: 

 Now that we have obtained expressions for the gravitational pressure and the degeneracy 

pressure, we can examine the interaction between the neutron degeneracy pressure and the 

gravitational pressure in a neutron star. Under equilibrium conditions, we know that the two 

pressures are equal in magnitude, but act opposite each other, such that Pn+Pg=0. Assuming our 

neutron star has a mass of M=2Msun, which is a reasonable mass for a neutron star, we can make 

an estimate on the radius of the star by solving Pn+Pg=0 as follows: 
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Where V=4/3πR3 for our approximation, and thus solving for R: 
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(24) 

Equation (24) comes from the fact that the neutron star mass, M, comes from the number of 

neutrons present multiplied by the mass of a single neutron. For this reason, we can replace Nn 

with the total mass of the star divided by the mass of a neutron, in other words Nn=M/mn. 
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Calculations and Conclusions: 

Equation (24) says that the radius of a neutron star is inversely proportional to the cube 

root of the mass. Using the mass estimate of M=2Msun and equation 24, we find that the radius 

R~9.8km. Comparatively, this radius gives a circular area of approximately 485 mi2 which is 

roughly three times larger than the city of Philadelphia. We can also calculate the density of the 

star using ρ=M/V, where the volume is (4/3)πR3, we obtain that the density of a neutron star to 

be approximately 9.8*1017 kg/m3. Finally, we calculate the neutron degeneracy pressure present 

in the neutron star by rearranging equation (15) and plugging these values. When we plug in 

Nn=M/mn and V=(4/3)πR3 into equation (15) we obtain: 

 

𝑃𝑛 =
3
10
3 ħ2

(15𝜋
1
3𝑚𝑛
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(
𝑀

4
)
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(25) 

After substituting the values mn=1.67*10-27kg for neutron mass, M=2Msun for the mass of the 

neutron star, ħ=1.054*10-34, and R=9800m calculated above, we calculate that the neutron 

degeneracy pressure is Pn~5.24*1033kg/ms2. We noted above that expression (13) was simply an 

approximation for the pressure inside of the neutron star, because we assumed the neutrons 

inside of the star were cold for the Fermi energy calculation, that the neutron star had a uniform 

neutron density, and that the neutrons behaved classically. It turns out that documentation of 

different observations of neutron stars agrees with our calculation. The typical radius of a 

neutron star of mass M=2Msun is reported as 10-11 km, which is consistent with our results. 

Thus, using ρ=M/V once again, we see that the densities match up very closely as well. For our 

calculations, we assumed that there were only two pressures in the neutron star, neutron 

degeneracy pressure and gravitational pressure. It turns out there is another that could account 
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for the slight difference, and that is thermal pressure. This pressure is considered to be an 

insignificant pressure compared to the neutron degeneracy pressure, which is why our values 

seem to be consistent with reported numbers from papers and textbooks. 

 Using quantum mechanical principles, we were able to derive an expression for both the 

electron degeneracy pressure and the neutron degeneracy pressure in a general form. We found 

an expression for the gravitational binding energy of a star, and the pressure in the star it creates. 

We were able to balance the neutron degeneracy pressure and the gravitational pressure to find a 

general expression for the radius of a neutron star. Finally, by assuming a mass of 2Msun we were 

able to calculate the radius and the density of the star to very close approximations. 
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