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I. Introduction 

In the ultra-cold microcosms of the mesoscopic scale, matter can behave in very bizarre 

ways.  In metals, such as aluminum, electrons seem to live in a world of absolute freedom;  they 

can move anywhere unobstructed, and can be anywhere and everywhere at the same time, 

well… as long as they have a buddy to go along with them.  What I am talking about is the 

superconducting state of matter.  It is a state that some metals, such as aluminum and lead (but 

not copper), undergo when cooled below a certain threshold temperature.  These 

temperatures are usually on the order of 1 K.  There are high temperature superconducting 

materials such as the famous cuprates YBa2Cu3O7 or “YBCO” and Bi2Sr2CaCu2O8 or “BSCCO” that 

have critical temperatures of 93 K and 13 K, respectively1.   The superconducting state is 

characterized by zero resistance and dissipation of magnetic fields1.    As humans in the 

macroscopic universe, we have absolutely no intuition about matter at this scale, but over the 

past century,  quantum mechanics has helped us at least describe the superconducting 

phenomena in specific, mathematical language.  Whether we actually understand the 

phenomena through quantum mechanics is a whole other topic. 

 What I am concerned with here is the more practical side of the superconductors.   

Many useful devices have been made such as ultrasensitive magnetic field detectors call 



S.Q.U.I.Ds.  These devices use various arrangements of seemingly simple devices called 

Josephson Junctions (JJ).  They are simple in the sense that they are made by sandwiching a 

very thin insulting oxide layer between two superconducting metals, as shown in fig. 1.    

 

 

 

 

My goal here is to present a potentially useful description of a Josephson Junction with 

scattering or S-matrices.  I will then show how we can use these S-matrices to calculate the 

properties of complex networks of JJs connected to each other with superconducting wires. 

II. Basic Theory of Superconductivity and Josephson Junctions 

Here, we will not concern ourselves with an in-depth description of superconductivity.  We 

simply want enough of a foundation to achieve our goal of an S-matrix.  Richard Feynman’s 

pedagogical description is sufficient for our purposes [2].   In the superconducting state, 

electrons condense down into a single macroscopic ground state.  If you are wondering how 

fermionic electrons can occupy the same quantum mechanical state, refer to references on the 

BCS theory of superconductivity [1].  To ease our concerns, the basic idea is that at super-low 

temperatures, the phonon interaction cause electrons to attract slightly and form into pairs 

with opposite spin due to the Pauli Exclusion Principle.  They form a single entity (whatever that 

Figure 1  - Simple schematic of a Josephson Junction. 
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is) called a cooper pair which behaves as a boson because their total spin is zero.  Bosons can 

occupy a single quantum state, so we can proceed with our macroscopic ground state. 

If we represent the wavefunction of a single electron as  |𝜓 , then the normalization 

condition is  𝜓 𝜓 = 1.  If we have a macroscopic wavefunction  |𝝍  describing all electrons in a 

superconductor, we would expect the normalization condition to be   𝝍 𝝍 = 𝑁 where N is the 

total number of electrons.  At a position 𝒓  and time t in the superconductor we would expect 

 𝝍(𝒓, 𝑡) 𝝍(𝒓, 𝑡) = 𝑛(𝒓, 𝑡) where 𝑛(𝒓, 𝑡) is the local density.  We can then write the 

macroscopic wavefunction as, 

 𝝍 𝒓, 𝑡 =  𝑛 𝒓, 𝑡 𝑒𝑖𝜙 𝒓,𝑡  (1) 

 In a Josephson Junction, there are two superconductors, so we have two macroscopic 

wavefunction, 

𝝍𝟏 𝒓, 𝑡 =  𝑛1 𝒓, 𝑡 𝑒𝑖𝜙1 𝒓,𝑡  

 𝝍𝟐 𝒓, 𝑡 =  𝑛2 𝒓, 𝑡 𝑒𝑖𝜙2 𝒓,𝑡  (2)  

With only a thin barrier between the superconductors, the wavefunction have a small 

overlap, which means there is a probability that the super electrons will tunnel through the 

barrier.  We now ask, what is the electric current associated with this tunneling?  Feynman’s 

approach is to couple the wavefunction via coupled Schrödinger equations [2] 

∂ψ1

∂t
=

-i

ℏ
 E1ψ1+Kψ2  



 
𝜕𝝍2

𝜕𝑡
=

−𝑖

ℏ
 𝐸2𝝍2 + 𝐾𝝍1  (3) 

where E1  and E2 and the energies of the two wavefunction and K is a general unknown coupling 

energy.  If we plug equations (2) into (3) and separate the real and imaginary parts, we obtain  
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 𝑛2sin⁡(𝜙2 − 𝜙1) 

 
1

2
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 𝑛2
= −

𝐾

ℏ
 𝑛1sin⁡(𝜙2 − 𝜙1) (4) 

 𝑖 𝑛1𝜙 1 = −
𝑖

ℏ
 𝐸1 𝑛1 + 𝐾 𝑛2cos⁡(𝜙2 − 𝜙1)  

 𝑖 𝑛1𝜙 2 = −
𝑖

ℏ
 𝐸1 𝑛2 + 𝐾 𝑛1cos⁡(𝜙1 − 𝜙2)  (5) 

If we assume the superconductors to be identical so that 𝑛1 = 𝑛2 ≡ 𝑛 and multiply equations 

(4) by the volume of the superconductor, V. and by the charge of a single cooper pair 2e, we 

have an equation for the supercurrent across the insulating barrier 

  𝐼𝑠 = 𝐼𝑐 sin 𝛾   (6) 

where 𝛾 = 𝜙2 − 𝜙1  called the phase difference, and  𝐼𝑐 =
4𝐾𝑒

ℏ
𝑉𝑛 =

4𝜋𝐾

Φ0
𝑉𝑛 and is a property of 

the Josephson Junction.  It is common to represent the current in terms of the flux quantum 

Φ0 = h 2e . It comes from the experimentally verified fact that the magnetic flux from the 

current in a superconducting ring is quantized.  A good explanation of this can be found in [1].  

If we take the difference of equations (5) and consider 𝐸2 − 𝐸1 = 2𝑒𝑈 where U is the electric 

potential difference across the junction, we get 



 𝑈 =
Φ0

2𝜋
𝛾   (7) 

Equations (6) and (7) are the fundamental Josephson relations.  They state that the current 

depends on the phase difference between the wavefunction and the electric potential depends 

on the rate of change of the phase difference.  These are very bizarre results.  It was long 

believed the phase of wavefunction was only a mathematical tool and had no real physical 

meaning.  Since Brian Josephson published these relations in his 1962 paper [3], physicists have 

been mystified by the quantum mechanical underpinnings that Josephson Junctions 

demonstrate.  Much of the motivation for studying Josephson Junctions is the potential 

answers they shed on the most fundamental questions of quantum mechanics. 

III. The Scattering Matrix 

 In the development of scattering matrices, we are going to concern ourselves only with 1 

dimension as it is a convenient and simple starting point, and it is the environment for which 

we have the necessary tools.  The process of calculating scattering matrices stems from the 

transfer matrix method of quantum mechanics as outlined in [4], and I will try to briefly 

summarize here.  If we have a constant potential of finite width V(x), the solutions to the time-

independent Schrödinger are complex linear combinations of a right and left traveling wave of 

the form 𝜓 𝑥 = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥  where 𝑘 =  2𝑚(𝐸 − 𝑉)/ℏ2 if E>V.  If E<V, then the general 

solution is 𝜓 𝑥 = 𝐴𝑒−𝜅𝑥 + 𝐵𝑒𝜅𝑥  where 𝜅 =  2𝑚(𝑉 − 𝐸)/ℏ2.  To find the solution to any 

piecewise constant potential, we simply match the wavefunction and its first derivative at each 

boundary.  For our purposes here, we are not going to consider energies above the potential, 



except at the asymptotic left and right limits where the potential is zero.  This will be more clear 

in a bit.   

 Here I will just outline the general procedure for matching boundaries without going 

through the full derivation.  This is so that the general reader can follow the method for finding 

the scattering matrix.  Refer to [4] for more detail.  To match boundaries, we first start with 

amplitudes AR and BR on the right side of the potential and put them in column form  
𝐴𝑅

𝐵𝑅
 .  

Then for each piece of constant potentials, we build the matrix 

𝑀 =  
cosh(𝜅𝑑) −𝜅−1sinh⁡(κd)

−𝜅 sinh(𝜅𝑑) cosh(𝜅𝑑)
 =  

𝑚11 𝑚12

𝑚21 𝑚22
  where d is the width of the potential.  

We multiply each of these matrices together to build one ‘M’ matrix for the whole potential 

𝑀 = 𝑀1𝑀2 …𝑀𝑁 =  
𝑚11 𝑚12

𝑚21 𝑚22
 .  Then to find the wavefunction amplitudes on the left,  

𝐴𝐿

𝐵𝐿
 , 

we build the transfer matrix  

  𝑇 =  
α 𝛽

𝛽 𝛼 
 =  

𝑡11 𝑡12

𝑡21 𝑡22
     

  
2𝛼 = 𝑚11 +

𝑘𝑅

𝑘𝐿
𝑚22 + 𝑖  𝑘𝑅𝑚12 −

𝑚21

𝑘𝐿
 

2𝛽 = 𝑚11 −
𝑘𝑅

𝑘𝐿
𝑚22 − 𝑖  𝑘𝑅𝑚12 +

𝑚21

𝑘𝐿
 

 (8) 

and multiply by the right amplitude column vector:  
𝐴𝐿

𝐵𝐿
 = 𝑇  

𝐴𝑅

𝐵𝑅
 .   

 Now we find the S-matrix.  The S-matrix relates input signals to output signals, so it is of the 

form  
𝐴𝑅

𝐵𝐿
 = 𝑆  

𝐵𝑅

𝐴𝐿
 .  We can get the elements of S from the transfer matrix.  After following 

the construction in [4], we get 



  𝑆 =  
−

𝑡12

𝑡11

1

𝑡11

det ⁡(𝑇)

𝑡11

𝑡21

𝑡11

 . (9) 

IV. Josephson Junction Potential 

 Before we can calculate the S-Matrix of a Josephson Junction, we need a suitable potential 

that correctly models a Josephson Junction.  Since a JJ has a barrier in the middle where the 

oxide layer is, an obvious guess is a single block potential.  It seems simple enough, but it would 

be nice if we can show that it works by deriving the Josephson relations (6) and (7) from the 

potential.  We can do this with probability currents. In general, for any wavefunction 𝜓, the 

probability current is [5] 

 

 

  𝑱℘ =
ℏ

2𝑖𝑚
 𝜓∗∇ψ − ψ∇ψ∗ = 𝑅𝑒  𝜓∗ ℏ

𝑖𝑚
∇𝜓    (10) 

Figure 2  - Potential energy diagram of a Josephson Junction. 



If we consider now our macroscopic wavefunction describing all the electrons in the 

superconductor, equation (10) would give us “particle” current, meaning the flow rate of 

particles, if we can speak classically.  If we multiply this by the charge, q, of a particle, then we 

obtain the electric current density.  Equation (10) becomes 

    𝑱𝑆 =
𝑞

𝑚
𝑅𝑒  𝜓∗ ℏ

𝑖
∇𝜓   . (11) 

Now we just need to find the macroscopic wavefunction inside the potential.  The general 

solution to the Schrödinger equation for energies below the barrier height is 

  𝝍 𝑥 = 𝐶1 cosh 𝜅𝑥 + 𝐶2sinh⁡(𝜅𝑥)  (12) 

If we plug (12) into (11), we get [5] 

  𝑱𝑆 =
𝑞𝜅ℏ

𝑚
𝐼𝑚{𝐶1

∗𝐶2} (13) 

To find the coefficients C1 and C2, we match the wavefunction inside the barrier, (12), with the 

wavefunction in the two superconductors (2) at the boundaries of the barrier x= -a, +a.  the 

phases of the wavefunction at the boundaries will be θ1 and θ2, respectively.  After doing this, 

we obtain for the coefficients [5] 

  𝐶1 =  𝑛1𝑒
𝑖𝜃1 + 𝑛2𝑒

𝑖𝜃2

2 cosh  𝜅𝑎  
   

  𝐶2 = −  𝑛1𝑒
𝑖𝜃1− 𝑛2𝑒

𝑖𝜃2

2 sinh  𝜅𝑎  
   (14) 

Plugging (14) into (13),  we obtain the current-phase Josephson relation (6) in terms of 

supercurrent density [5] 



  𝐽𝑆 = 𝐽𝐶sin⁡(𝜃1 − 𝜃2) (15) 

where the critical current is  𝐽𝐶 = −
𝑞ℏ𝜅

𝑚

 𝑛1𝑛2

2 sinh  𝜅𝑎  cosh ⁡(𝜅𝑎 )
. 

  Now that we know the potential pictured in figure 2 correctly models a Josephson Junction, 

what are typical parameters of real junctions?  Are there other potentials that work?  The 

barrier width is simply the thickness of the oxide insulating layer of the Josephson Junction. One 

group at Cornell University [6] made ultrathin aluminum Oxide JJ with the AlOx layer ranging 

from 0.6 to 1.5 nm.  The barrier height was 1.2 eV.  Another group [7], who studied aluminum 

nitride barriers with niobium nitride plates (NbN/AlN/NbN), produced junctions with two 

different barrier heights that depended on the critical current.  They published a theoretical 

equation that relates the critical current density, JC, with the barrier height, φ, and the barrier 

thickness, d 

  𝐽𝐶 = 3.16 × 1010  𝜙

𝑑
exp⁡(−1.025 𝜙𝑑) . (16) 

In the low and high JC regions, they found barrier heights of 2.35 eV and 0.88 eV, respectively.  

They were inconclusive as to why this junction had two different barrier heights.  The 

thicknesses of their barriers ranged from around 1.0 nm to 1.8 nm.  The thicker barriers had 

higher barrier heights, and the transition between low to high barrier heights was around 1.3 

nm.  This demonstrates how modeling a Josephson Junction with the potential depicted in 

figure 2 is really just a simple starting point. For example, another group working with Nb,Pb 

based junction found their potential to be trapezoidal shaped [8]. 



 We can also consider insulators with impurities [1].  These would provide semiconductor-like 

effects.   My question is, would these types of junctions exhibit any kind of resonances?  I 

suspect so, but would need to investigate further.  This could possibly lead to other Josephson 

effects. 

V. The S-Matrix for Networked Josephson Junctions 

 Ultimately, from the network S-matrix, we want to relate the input signals to the output 

signals at the external ports.  Here, we will consider a network with only 2 external ports, so our 

S-matrix will be a square matrix of dimension two.  The process of building such an S-matrix is 

adapted from references [9] and [10].   In these papers, they use network s-matrices to 

investigate the magnetic structure of high-TC superconductors.  They model the lattice as a 

network of small superconducting wires connected at nodes. This fits beautifully for network 

Josephson Junctions. 

 The method involves creating two matrices: one that relates all the ports of the wires, and 

one that relates all the ports of the nodes.  In the wire s-matrix, Sw, we want to transform all 

inputs at each port to all outputs at the opposite port, so for N wires, we will have a 2N 

dimensional matrix.  We put this matrix in this form: 

    
𝑜1

𝑜𝑛

⋮
 =  

𝑠𝑒𝑒 𝑠𝑒𝑖

𝑠𝑖𝑒 𝑠𝑖𝑖

  
𝑖1

𝑖𝑛
⋮
  (17) 

where see relates all and only the external ports.  In our case, we will only have two external 

ports labeled 1 and n, and see will be a square dimension two matrix.  The sub-matrix sii works 



similarly but relates all and only internal ports of the wires.   The other two sub-matrices then 

relate the internal to the external. 

 The node matrix, Г, also relates the internal ports to each other, but only for the nodes.  The 

node matrix will have the same dimensions as sii and needs to have columns and rows in the 

same order, as we will see.  The process of building this matrix is to look at each node 

separately then put them together.  For nodes it is easier to relate how the outputs are directed 

to the inputs, so the node matrix is in this form: 

   
⋮
𝑖𝑗
⋮

 = Γ  
⋮
𝑜𝑗
⋮

 . (18) 

Once we have these two matrices in the proper form, we can find the total S-matrix of the 

network by doing the following matrix operations: 

   (19) 

 Now, we will calculate the S-matrix of a simple network, as depicted in figure 3. 
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Figure 3 – Schematic of the network for which we calculate the 
network S-Matrix. 



For this network, we have total of six wires and four nodes.  I treated the wires as lossless 

transmitters.  This means that the signals at the inputs are exactly the same at the outputs, 

phase included.  Our wire S-matrix is then a 12x12 undirected connectivity matrix with ones for 

each pair of connected ports and zeros everywhere else.  Two of the nodes are Josephson 

Junctions, depicted as grey circles with a cross.  The S-matrix of the Josephson Junction can be 

found by following the procedure in part III, using the potential in figure 2.  For the transfer 

matrix in the form of equation (8), we get 

     

   (20) 

 

Following equation (9), we obtain a symmetric S-matrix for a single Josephson Junction of the 

form 

   (21) 

Where  
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Here, k and κ are defined as before, and d is the thickness of the insulating layer in the 

Josephson Junction.  There are two of these JJ S-matrices relating ports 2 and 3, and 6 and 7.  

The other two nodes simply connect the wires, and we can choose how it directs all the inputs 

to the outputs.  The only constraint they must be unitary.  I chose to treat these nodes like 

50/50 beam splitters so that they divide the inputs as symmetric as possible.  Therefore, the 

three-port node s-matrices are of the form 

   

 (23) 

Where 

 (24) 

 

I included a phase factor on c so that the nodes would also transmit phase information since 

Josephson Junctions are phase dependent devices.   Our node matrix then is 
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Now that we have our matrices we can do the matrix operation in (19) to find our network 

S-matrix for which we obtain 

 (26) 

 

VI. Conclusion and Discussion 

We quickly notice that the network S-matrix is symmetric as expected because our network 

is symmetric and all of our nodes are symmetric.  In this preliminary work, I made many 

simplifications.  For future work, we include phase altering superconducting wires since phase 

will be coherent but not uniform all along the wire.  As mentioned before, we can also 

investigate other, possibly more accurate potential energy representations of Josephson 

Junctions.  Also, we can investigate other, more complex networks. 
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