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In this paper a practical implementation of the Lanczos method is applied to a real-world 
quantum mechanical system. A two dimensional banded symmetric Hamiltonian is introduced 
and the first ten eigenpairs are plotted. A brief overview of the Lanczos procedure is also given to 
elucidate the inner workings of the process.  
 

Introduction: 
In the experimental design of studied by Yang, we 
were introduced to a circuit consisting of two distinct 
sections, the Joseph-Johnson coupling and the 
traditional LC circuit. The Hamiltonian can be 
expressed through the traditional application of 
Kirchhoff’s laws yielding: 
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The potential, governed by the Joseph-Junction is the 
so-called ‘washboard’ potential, due to it’s shape. 
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The Hamiltonian, a function of the two variables 
1 2,γ γ , can be mapped conveniently onto a matrix. 

The expectation value of the this operator <Ψ|H|Ψ > 
will lead to a corresponding eigenpair. We can map 
the gird of H using a simple finite difference equation, 
onto a vector whose elements are defined as, {Ψ00, 
Ψ10, ..., Ψn0, Ψn1, ..., Ψnn}. When the corresponding 
eigenvector is found, these elements are then mapped 
back onto their corresponding gird locations. 
Schematically, mapping Yang's potential onto H has 
the form of: 

 
The problem now has been reduced to the standard 
linear algebra form of finding selected eigenpairs. 
Those with the smallest eigenvalues are of the most 
physical interest, as they give the probability density 
of the ground state and the lowest corresponding 
excited modes. For notational convenience and 
consistency with mathematical texts, from this point 
onward the matrix representing the Hamiltonian will 
be designated as A. Our problem can simply be stated 
as thus: 

x xλ=A  
 
Iterative Power Method 
To fully appreciate the Lanczos routine, it helps to 
step back and get a perspective on iterative matrix 
procedures and subsequently, the Krylov subspace. To 
begin with, we look at the power iteration as a 
stepping stone to the Lanczos procedure. 
 
In the power iteration, the dominant eigenvalue and 
it’s corresponding eigenvector can be found by simply 
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applying the matrix repeatedly onto any starting 
vector. 
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At each successive iteration of the algorithm, the 
eigenvalues become completely dominated by the 
largest eigenvalues, hence only the largest survives. 
While interesting in its own right, the speed of 
convergence is slow [O(n2) for each iteration] but can 
be expedited greatly if the matrix is sparse. Seeking 
more flexibility we can calculate the smallest 
eigenvector by taking the inverse of A, that is: 
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These ideas can even be extended further to calculate 
the eigenvector of any eigenvalue, if the value is 
known approximately in the spectral region, by 
employing a clever shift of the matrix: 
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It must be noted that the eigenpair found corresponds 
to A only through a relation of the Rayleigh quotient. 
 
From Krylov subspaces and Rayleigh-Ritz  vectors 
to the Lanczos procedure: 
Based off the power iteration, the Krylov subspace is 
spanned by some initial vector v: 
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The relation between this subspace and the power 
iteration is clear. In the Krylov subspace most 
symmetric matrices can be represented as a tridiagonal 
matrix , where Q is simply the Krylov basis 
after the Gram-Schmidt orthonormalizing process
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1. 
This is wonderful news if this new subspace is 
invariant to our original one, i.e. the eigenpairs in the 
Krylov subspace are the same as those in our original 
matrix. Alas, the Krylov basis only approximates the 
original one due to finite precision, but the relation 
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1 Simply put, this forces all vectors to be orthogonal to each 
other  

between the two can be found through the Rayleigh-
Ritz procedure. The eigenpairs found in Q A  are 
now approximations A, which get better as the size of 
our basis m, increases. The heart of the Lanczos 
procedure is to combine the two techniques so that the 
original matrix is ‘reduced’ to a tridiagonal one. 
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The tridiagonal matrix we will be forming at each step 
of the Lanczos procedure T Q , is A’s 
projection into the Krylov subspace. The diagonal and 
super/sub diagonals of T are designated as 

= *
m m

,i iα β  
respectively. A verbose way of stating the iterative 
procedure that comprises the Lanczos procedure is: 
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Expanding this out to pseudo-code: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are several key points to notice about the 
algorithm. The first is that only four vectors 
r,u,q[j],q[j-1] need to be keep in fast storage2. Also, 
our rating limiting step, the matrix/vector multiply can 
be considerably reduced if the matrix is sparse.  
 

 
2 It can be done with only two vectors, but comes at a cost 
of computation 

Choose initial r  r need not be random, in 
fact choosing a starting 
vector close to desired 
eigenvectors speeds 
convergence. 
 
 
This matrix/vector 
multiply is the most 
computationally 
expensive step, and 
hence the limiting factor 
 
 
The orthogonalization 
can be done in many 
different ways, running 
the gamut from none, 
partial/selective to full. 

0 rβ =  

0q = O  

1 0/q r= β  
Loop for j = 1,2,…m 
    ju q= A  
    1 1j jr u q= β− −−  

    *
j jq rα =  

    j jr r q= α−  
Reorthogonalize( r ) 
    j rβ =  
    1 /j jq r  = β+



The orthogonalization step has been downplayed as 
the great failure of the Lanczos procedure. In finite 
arithmetic, round off errors will force the product 

*
j jQ Q  to diverge from the identity, which in turn 

makes in the eigenvectors of T diverge. Since one of 
the key points of eigenvectors is their orthogonality, 
this represents a serious source of error. Fortunately 
there are remedies. The solution chosen for this 
implementation was the slowest, but most accurate, 
known as the Gram-Schmidt orthogonalization. This 
can be done simply by looping at each iteration. 
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As you can see, this get prohibitively more expensive 
as you attempt to evaluate greater eigenstates. 
 
When an appropriate number of iterations m, have 
been preformed, you are left with an mxm tridiagonal 
matrix T. These eigenvalues,θ , are approximate 
eigenvalues,λ ,to A. The eigenvectors can be found 
by: 
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Where s is the matrix containing the eigenvectors of 
T. If one were to watch θ , as the iterations 
proceeded, you would find that the eigenvalues that 
were converging were the extremal ones. This is a 
property of the Krylov subspace, and was evident 
from our Power Iteration example. 
 
Problem setup: 
A general Lanczos produce was written in C++ using 
the above algorithm [Appendix]. In this 
implementation, all the end user must supply is the 
matrix/vector routine, everything else in the Lanczos 
procedure is self-contained. Full orthogonalization 
was chosen due to it’s ease of implementation and 
high accuracy. 
 
For the banded matrix produced in our problem, 
calculation of the matrix/vector product required 
roughly o(6j) ops rather than the traditional o(j2). Also 
the Hamiltonian is never explicitly sorted in memory 
and is only represented as a function call to save 
memory access. 
 
 
 

Numerical Results: 
As with all good intentions, the end result of the 
computation lead down a dark path. The reasoning 
behind its failure was extremely pedagogic, but 
unfortunately the eigenvectors that were sought after 
could not be obtained to any great accuracy. 
 
The Lanczos algorithm was first coded in MAPLE 
[Appendix], to serve as a check to any  advanced 
code. As a check against the Lanczos routine, the 
matrix was solved via brute forced for all of its 
eigenpairs. All results, unless noted, will be from the 
calculations obtained from the exact solutions. The 
Lanczos routines, in both MAPLE and C++, produced 
identical results, giving confidence to the successful 
implementation of the algorithm. However, only the 
ground state eigenvector converged for the Lanczos 
method using a reasonable step size. The reason for 
this is clear we look at the eigenvalue spectrum: 
  

 
 
The Lanczos algorithm is a convergent one. The 
convergence properties of the Krylov subspace 
suggest the eigenvalues to converge first are the 
extremal ones. The convergence is not uniform nor 
completely understood. Standard practice seems to 
suggest that given an eigenvalue spectrum, where one 
end is clustered and the other end diffuse, the diffuse 
end will converge first. In Yang's potential, it is 
evident that the spectrum of eigenvalues should 
converge to the upper eigenpairs first. Considering the 
physics of the problem, this is not optimal as we 
desire the lower level eigenstates. If a full iteration is 
preformed where the Krylov subspace spans that of 
the original subspace, the eigenpairs do match up, but 
the computational gain makes the endeavor worthless.  
 
 



 
Ground state probability density on a 20x20 grid showing the 
Lanczos (left) and exact (right).  
 
In an extended project, there is hope to salvage the 
Lanczos routine to converge to the lower eigenvalues. 
Extensive work has been done to work on a shift 
matrix, one where the spectrum of the eigenvalues 
have been rotated around a point in the space. 
Roughly, this has the effect of an inverse operation on 
the spectrum, close values will become separated, 
etc... However, this new shifted matrix H', is not 
invariant to our original matrix, and introduces a host 
of new orthogonality issues. 
 
Physical Results: 
While this implementation of the Lanczos routine 
clearly needs refinement, we can still push the limits 
of the computation by traditional methods. MAPLE, 
while not the most efficient code, has the advantage of 
it's simplicity in coding and results. The two-
dimensional washboard potential has a host of 
interesting features. Approximately, the results could 
be interpreted as a system of two-dimensional 
harmonic oscillators of varying heights. Obviously 
this is a simplified picture, but if we approximated 
these eigenstates as harmonic oscillator potentials (as 
Yang did in his initial calculation) the results should 
have a correspondence. Yang's approximations then 
serve as a guide to model the washboard potential and 
seem to give decent qualitative results. The 
quantitative solutions however are far more 
interesting. The probability densities for the first ten 
states are shown below in left to right order using an 
exact solution with an 80x80 grid size (6400x6400 
matrix). 
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