
LLaanncczzooss VVeeccttoorr PPrroocceedduurreess
TTrraavviiss HHooppppee

Abstract:

This paper is intended as a graduate-level introduction to the theory and application of Lanczos
procedures. A theoretical introduction will be developed for exact and finite precision matrices.
The block symmetric method for real symmetric matrices will be introduced for their versatility
in dealing with large, dense matrices that are common in many real-world engineering problems.
A sample calculation is given to illustrate the Lanczos procedures in exact arithmetic. Sample
code in C++ is also provided as a starting point for interested parties.

Introduction:
Cornelius Lanczos, born 1893, was a man of
great mathematical talent often displaced by
raging political climates. From changing his
original name, Kornél Löwy, to avoid anti-
German sentiment in Hungary, fleeing Hungary
to avoid harsh anti-Jewish laws (to Germany,
1921), fleeing Germany to avoid the rise of anti-
Semitism (to USA, 1931), fleeing the United
States to avoid McCarthyism (1950), to finally
arrive in Dublin Ireland1. It was while he was in
the United States that Lanczos (et al.) developed
the method that would eventually be known as
the Fast Fourier Transform (FFT). The Lanczos
vector procedures, when first introduced (1960),
were met with harsh criticism due to the
inevitable loss of orthogonality of the
eigenvectors in finite precision. The
orthogonality issue has been addressed in
modern times, and the block representation has
highly parallel properties for matrix calculations
when the cost of I/O operations are
computationally expensive.

Lanczos method in exact arithmetic
In general, we wish to solve

Ax xλ=
and

T T
y A yλ=

The presentation for exact arithmetic and finite
precision will make no assumptions on A except
that it is real. For block representation we will

1 B Gellai, Cornelius Lanczos: a biographical essay, in
Proceedings of the Cornelius

assume that A is symmetric as well. All
methods can be extended to matrices that are
unsymmetrical and complex. Readers may be
unfamiliar with the second eigenvector
equation. In general x and y are known as the
right and left eigenvectors respectively. In most
physical applications the eigenvector referred to
is the right eigenvector, however the Lanczos
procedure generates both2. The Lanczos method
will generate two sets of biorthogonal vectors:

 T T
n n n n nY X I Y AX T= =

Where I is an nxn identity matrix, and T is a
tridiagonal matrix.

We can manipulate by pre and post
multiplications:

 T T
n n n n n n n n n n

T TX Y AX X T Y AX Y T Y= =
 T T

n n n n nAX X T Y A T Y= = n

If we define the elements of T as:

1 1

1 2 2

2 1 1

1

...n

n n n

n n

T

α γ
β α γ

β α γ
β α

− − −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2 I have not come across code that speeds up when only
the right eigenvector is needed.

 1

Then by equating the columns of the previous
equation we have:

1 1k k k k k k k 1Ax x x xγ α β− − += + +

1 1 1
T T T
k k k k k k

T
ky A y y yβ α γ− − += + +

For all integer k < n, where the x and y are the
kth columns of Y and X. Note that these are not
the eigenvectors we are seeking (those were
denoted with an overbar3). These x and y are
known as the Lanczos vectors. Starting with
some arbitrary initial conditions for the
recurrence:

0 0 0xγ =

0 0 0Tyβ =

We can reorder to obtain, the ‘famous4’ three
member recurrence:

1 1 1k k k k k k kx Ax x xβ γ α+ − −= − −

1 1 1
T T T

k k k k k k k
Ty y A y yγ β+ − −= − −α

This expression is not unique, in fact it holds for
any linear combination such that:

11

T
kk k ky xβ γ ++=

A choice must be made then, to satisfy this
condition. The particular choice:

11

T
kk ky xδ ++=

| |k kβ δ=
()k k ksignγ β δ= ,

not only satisfies the condition, but makes the
tridiagonal matrix, T symmetric (with exception
to the sign of γ). We can see that in exact
arithmetic, the Lanczos vectors are orthonormal,

3 The relation between the Lanczos vectors and the
eigenvectors are 1 1k k kx xβ+ += and 1 1k k kx xβ+ +=
4 Every book that introduces the recurrence calls it
famous, so in deference to it’s popularity I stick with
convention.

i.e.

1T
k ky x =

0 0T T
k j j ky x y x= =

For all j < k. We can now solve for the final
element in T, by using this condition and taking
the three member recurrence relation to obtain:

T
k ky Axα = k

Our construction of T, which is a transformation
of our original matrix A, leaves the eigenvalues
invariant5. These eigenvalues, which are
referred to as the Ritz values, are
approximations to the eigenvalues of A (the
designation seems superfluous, but in finite
precision the two are not equal). The
eigenvectors of A can be found from the Ritz
vectors by:

 i n i n iix X u y Y v= =

Where X and Y are the matrices containing the
Lanczos vectors, and u and v are the
eigenvectors of T. These can be found rather
quickly since T is almost a symmetric
tridiagonal matrix (the exception being the
minus sign). Various numerical packages have
packages for tridiagonal matrices i.e. Numerical
Recipes, et al. The most popular method seems
to be a QR decomposition in finding the
eigenvectors, whose convergence is guaranteed
to be quick. The procedure breaks down with
multiple eigenvalues but significant extensions
have been made to handle these special cases. It
is the loss of orthogonality in finite precision
that presents a far more serious problem.

Lanczos method with finite precision;
loss of orthogonality

In each step of the Lanczos procedure, there is
an inherent round-off error in the step:

5 I was unable to find a proof of this, every treatment
simply assumed it was so

 2

1 1 1k k k k k k k xx Ax x x fβ γ α+ − −= − − +

1 1 1
T T T T

k k k k k k k yy y A y yγ β α+ − −= − − + f

These errors accumulate and influence the

kδ term which will approach zero. When this
happens the Lanczos procedure terminates and
cannot be continued. The local orthogonality
can be measured by the following metric:

1

1

| |
|| || || ||

T
k k

x
k k

x x
x x

ε +

+

=

And likewise for the y vectors. The most drastic
procedure, recommended by Lanczos, was to
orthogonalize each new vector to the previous
ones using the Gram-Schmidt process. This is a
computationally expensive operation, and one
that initially lead to the rejection of the Lanczos
procedures. In more recent times, it has been
realized that a full orthogonalization is not
necessary, rather an adapted partial convergence
algorithm is sufficient.

Symmetric Block Lanczos6:
The symmetric block method is where the real
power of the Lanczos procedure shines. We will
construct blocks of Lanczos vectors of size b.
Once we have chosen a block size, it is only
necessarily to access the matrix A for each
block, rather than for each vector. If the speed
of I/O operations is a critical bottleneck (which
often is the case when n is large enough) the
Lanczos method essentially results in a b-fold
reduction in I/O access.

Since the Lanczos process is an iterative one, it
converges on the eigenvector solution. Based
off the geometry of the converge it naturally
finds the extremal eigenvalues first. This may be
a welcome event, but in event that the user
wishes to find the eigenvalues in a spectral
range, the procedure can be modified to
converge along any spectral range known a
priori. Often in industrial applications, the

6 Golub, Matrix Computations.

spectral range is well known so the method is
well suited for such problems. Since each
calculation is essentially independent, the
implementation is begging for parallelization.

Now consider the block matrix:

1 1

1 2 2

1

1

T

T
T

j T
r

r r

M B
B M B

Q AQ T
B

B M
−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
#

With an orthogonal Q such that:

1,[, rQ X X]= …

We can establish a similar three member
recurrence as the previous problem by equating
columns by noting that AQ QT= , thus

1 1 1
T

j j j j j j jAX X B X M X B− − += + +

Again, we define an intermediate:

1 1
T

j j j j j jR AX X M X B− −= − −

Which allows us to calculate the elements of X
and B, by taking the QR decomposition:

1j j jX B R+ =

And iteratively, calculating the next element of
the matrix:

1 1
T

1j j jM X AX+ + +=

With the appropriate transformations, T can be
reduced to a scalar (non-block) tridiagonal form.
The solution is now of size J = j*b, where J <<
n.

The loss of orthogonality is even more
complicated in this case. Any serious code will
have to deal with each of these issues to the
desired accuracy. Without going into detail,
there are three types:

1] internal – within the current block
2] local – with respect the previous block
3] global – with respect to all previous blocks

 3

Sample Calculation in exact arithmetic:
This presentation is similar to that of Komzsik7
but fewer of the intermediate steps are worked
out. Given the unsymmetrical 3x3 matrix:

1/ 2 1/ 2 1/ 2
0 0 2

3/ 2 1/ 2 9 / 2
A

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

With the starting vectors randomly selected
(which do not have to be orthogonal, as in this
case):

1 1

1 1
0 y 1/ 2
1 1

x
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

/ 2

/ 2
−

1/ 2

3/ 2−

We can find the first intermediate vectors:

1 1 1 1

1
2 w 1/ 2
3

Tz Ax A y
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= = = = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

Get first Lanczos coefficient and update our
intermediates:

1 1 1 1Ty zα = =

1 1 1 1 1 1

0
2
2

k kz z x xα γ − −

⎡ ⎤
⎢ ⎥= − − = ⎢ ⎥
⎢ ⎥−⎣ ⎦

1 1 1 1 1 1

1
w w 1

1

T
k ky yα β − −

−⎡ ⎤
⎢ ⎥= − − = ⎢ ⎥
⎢ ⎥−⎣ ⎦

The next Lanczos coefficients are:

1 1 1 1 14 = 2Tv z 1δ β δ γ= = = =

The next iteration of the Lanczos procedure
requires the normalization:

1 1
2 2

1 1

0 1
1 y 1/ 2
1

z wx
β γ

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

/ 2

1/ 2−

/ 2

/ 2

7 Komzsik, The Lanczos Method

The process is repeated for the next iteration,
yielding the next block of coefficients and
Lanczos vectors:

2 2

1 1
1 y 1/ 2

0 1
x

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢= − = − ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢− ⎥⎣ ⎦ ⎣ ⎦

When the process is completed we have:

3

1 2 0
2 3 1
0 1 1

T
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

While T matrix seems underwhelming8 in
comparison to the work done, we have
calculated along the way the Lanczos vectors.
This enables us to find the eigenvalues of T, [1,
2± 6] which are the same as those in A. In
finite precision, as evidenced by the code in the
Appendix gives the same T exactly, so the loss
of orthogonality is not an issue when n is small.

Scientific code available online:
While coding is always an enjoyable endeavor,
the scientific community would never advance
if every paper had to re-derive each equation
from scratch. The internet is a vast repository of
numerical code, Lanczos included. Listed below
is a partial list of such codes:

Netlib, a collection of mathematical software,
papers, and databases (FORTRAN):
http://www.netlib.org/lanczos/

UC Davis has Lanczos in several languages (C,
C++, FORTRAN) for different flavors of
matrices:
http://www.cs.ucdavis.edu/~bai/ET/lanczos_met
hods/lanczos_methods.html

An implementation (C) of the square-shift
method (not discussed in this paper):
http://angel.elte.hu/lanczos/

8 A 3x3 tridiagonal matrix isn’t that different from an
unsymmetrical one anyways!

 4

http://www.netlib.org/lanczos/
http://www.cs.ucdavis.edu/%7Ebai/ET/lanczos_methods/lanczos_methods.html
http://www.cs.ucdavis.edu/%7Ebai/ET/lanczos_methods/lanczos_methods.html
http://angel.elte.hu/lanczos/

Appendix:
Code to calculate the Lanczos vectors:
Highlights were used to illustrate the Lanczos
procedure. The rest of the code consists of
formatting and simple Matrix operations.

/* Easily adaptable code for calculating the
Lanczos vectors of a given matrix. Extensions
can be made to improve numerical stability by
any orthogonlization procedure due to the
inherent instabilities of finite precision. -
Travis Hoppe, 3.7.05 */

#include <iostream>
#include <iomanip>
#include <cmath>
#include "nrutil.h"
using namespace std;
int N=3;

// Matrix operations
void MdV(double ** A, double * b, double * out
) {
 int i,j;double value=0;
 for(j=0;j<N;j++){
 for(i=0,value=0;i<N;i++)
 value+=A[j][i]*b[i];
 out[j] = value; }}

void VTdM(double * bT, double ** A, double *
out) {
 int i,j;double value=0;
 for(j=0;j<N;j++){
 for(i=0,value=0;i<N;i++)
 value+=A[i][j]*bT[i];
 out[j] = value; }}

void VTdV(double *bT, double * c, double & out)
{
 out = 0;
 for(int i=0;i<N;i++)
 out += bT[i]*c[i]; }

void VmV(double *b, double & s, double *c) {
 for(int i=0;i<N;i++)
 b[i] -= s * c[i]; }

void VdS(double *b, double s) {
 for(int i=0;i<N;i++)
 b[i] *= s; }

// Various outputs
void printV(double * b) {
 cout << " [";
 for(int i=0;i<N;i++)
 cout << setw(8) << b[i]; cout << "] "; }

void printV(double * b, int offset) {
 cout << " [";
 for(int i=0+offset;i<N+offset;i++)
 cout << setw(8) << b[i]; cout << "] "; }

int main() {

 // allocate space for the variables
 int i,j,k;
 double ** A = dmatrix(0,N,0,N);
 double ** T = dmatrix(0,N,0,N);
 double *x[N+1],*y[N+1],*z[N+1],*w[N+1];
 double *alpha = dvector(0,N+1);
 double *beta = dvector(0,N+1);

 double *gamma = dvector(0,N+1);
 double delta;

 for(i=0;i<N+1;i++) {
 x[i] = dvector(0,N);
 y[i] = dvector(0,N);
 z[i] = dvector(0,N);
 w[i] = dvector(0,N); }

 // set the sample matrix up
 A[0][0]=.5; A[0][1]=.5; A[0][2]=-.5;
 A[1][0]= 0; A[1][1]= 0; A[1][2]=- 2;
 A[2][0]=1.5; A[2][1]=-.5; A[2][2]=4.5;
 x[1][0]=1; x[1][1]=0; x[1][2]=-1;
 y[1][0]=.5; y[1][1]=-.5; y[1][2]=-.5;

 // calculate the Lanczos vectors
 for(k=1;k<N;k++) {

 MdV (A,x[k],z[k]);
 VTdM(y[k],A,w[k]);
 VTdV(y[k],z[k],alpha[k]);

 VmV (z[k],alpha[k],x[k]);
 VmV (z[k],gamma[k-1],x[k-1]);

 VmV (w[k],alpha[k],y[k]);
 VmV (w[k],beta[k-1] ,y[k-1]);

 VTdV(w[k],z[k],delta);
 beta[k] = sqrt(abs(delta));

 gamma[k] = beta[k];
 if(gamma[k]<0) gamma[k] *= -1;

 x[k+1] = z[k];
 VdS(x[k+1], 1.0/beta[k]);

 y[k+1] = w[k];
 VdS(y[k+1], 1.0/gamma[k]);

 cout << k << " -> ";
 cout << "x "; printV(x[k]);
 cout << "y "; printV(y[k]);
 cout << alpha[k] << ' '
 << beta[k] << ' ' << gamma[k];
 cout << endl;

 cout << " ";
 cout << "v "; printV(z[k]);
 cout << "w "; printV(w[k]);
 cout << endl;

 }

 MdV (A,x[N],z[N]);
 VmV (z[N],alpha[N],x[N]);
 VTdV(y[N],z[N],alpha[N]);

 // display the output
 cout << k << " -> ";
 cout << "x "; printV(x[N]);
 cout << "y "; printV(y[N]);
 cout << alpha[N] << endl;

 cout << " -=-=-=-=-=-=-= " << endl;
 cout << " diagonal: "; printV(alpha,1); cout
<< " super-di: "; printV(gamma,0); cout <<
endl;

 return 0;}

 5

