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Abstract: 

This paper is intended as a graduate-level introduction to the theory and application of Lanczos 
procedures. A theoretical introduction will be developed for exact and finite precision matrices. 
The block symmetric method for real symmetric matrices will be introduced for their versatility 
in dealing with large, dense matrices that are common in many real-world engineering problems. 
A sample calculation is given to illustrate the Lanczos procedures in exact arithmetic. Sample 
code in C++ is also provided as a starting point for interested parties. 
 

Introduction: 
Cornelius Lanczos, born 1893, was a man of 
great mathematical talent often displaced by 
raging political climates. From changing his 
original name, Kornél Löwy, to avoid anti-
German sentiment in Hungary, fleeing Hungary 
to avoid harsh anti-Jewish laws (to Germany, 
1921), fleeing Germany to avoid the rise of anti-
Semitism (to USA, 1931), fleeing the United 
States to avoid McCarthyism (1950), to finally 
arrive in Dublin Ireland1. It was while he was in 
the United States that Lanczos (et al.) developed 
the method that would eventually be known as 
the Fast Fourier Transform (FFT). The Lanczos 
vector procedures, when first introduced (1960), 
were met with harsh criticism due to the 
inevitable loss of orthogonality of the 
eigenvectors in finite precision. The 
orthogonality issue has been addressed in 
modern times, and the block representation has 
highly parallel properties for matrix calculations 
when the cost of I/O operations are 
computationally expensive. 
 
Lanczos method in exact arithmetic 
In general, we wish to solve  

Ax xλ=  
and 

T T
y A yλ=  

The presentation for exact arithmetic and finite 
precision will make no assumptions on A except 
that it is real. For block representation we will 
                                                 
1 B Gellai, Cornelius Lanczos: a biographical essay, in 
Proceedings of the Cornelius 

assume that A is symmetric as well. All 
methods can be extended to matrices that are 
unsymmetrical and complex. Readers may be 
unfamiliar with the second eigenvector 
equation. In general x  and y  are known as the 
right and left eigenvectors respectively. In most 
physical applications the eigenvector referred to 
is the right eigenvector, however the Lanczos 
procedure generates both2. The Lanczos method 
will generate two sets of biorthogonal vectors: 
 

           T T
n n n n nY X I Y AX T= =  

 
Where I is an nxn identity matrix, and T is a 
tridiagonal matrix. 
 
We can manipulate by pre and post 
multiplications: 

           T T
n n n n n n n n n n

T TX Y AX X T Y AX Y T Y= =  
           T T

n n n n nAX X T Y A T Y= = n  
 
If we define the elements of T as: 

1 1
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2 1 1

1

... ... ...n

n n n

n n

T

α γ
β α γ

β α γ
β α

− − −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

                                                 
2 I have not come across code that speeds up when only 
the right eigenvector is needed. 
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Then by equating the columns of the previous 
equation we have: 
 

1 1k k k k k k k 1Ax x x xγ α β− − += + +  

1 1 1
T T T
k k k k k k

T
ky A y y yβ α γ− − += + +  

 
For all integer k < n, where the x and y are the 
kth columns of Y and X. Note that these are not  
the eigenvectors we are seeking (those were 
denoted with an overbar3). These x and y are 
known as the Lanczos vectors. Starting with 
some arbitrary initial conditions for the 
recurrence: 

 
0 0 0xγ =  

0 0 0Tyβ =  
 
We can reorder to obtain, the ‘famous4’ three 
member recurrence:  
 

1 1 1k k k k k k kx Ax x xβ γ α+ − −= − −  

1 1 1
T T T

k k k k k k k
Ty y A y yγ β+ − −= − −α  

 
This expression is not unique, in fact it holds for 
any linear combination such that: 
 

11

T
kk k ky xβ γ ++=  

 
A choice must be made then, to satisfy this 
condition. The particular choice: 

11

T
kk ky xδ ++=  

| |k kβ δ=  
( )k k ksignγ β δ= , 

 
not only satisfies the condition, but makes the 
tridiagonal matrix, T symmetric (with exception 
to the sign of γ ). We can see that in exact 
arithmetic, the Lanczos vectors are orthonormal,  

                                                 
3 The relation between the Lanczos vectors and the 
eigenvectors are 1 1k k kx xβ+ +=  and 1 1k k kx xβ+ +=  
4 Every book that introduces the recurrence calls it 
famous, so in deference to it’s popularity I stick with 
convention. 

 
i.e. 

1T
k ky x =  

0           0T T
k j j ky x y x= =  

 
For all j < k. We can now solve for the final 
element in T, by using this condition and taking 
the three member recurrence relation to obtain: 
 

T
k ky Axα = k  

 
Our construction of T, which is a transformation 
of our original matrix A, leaves the eigenvalues 
invariant5. These eigenvalues, which are 
referred to as the Ritz values, are 
approximations to the eigenvalues of A (the 
designation seems superfluous, but in finite 
precision the two are not equal). The 
eigenvectors of A can be found from the Ritz 
vectors by: 
 

           i n i n iix X u y Y v= =  
 
Where X and Y are the matrices containing the 
Lanczos vectors, and u and v are the 
eigenvectors of T. These can be found rather 
quickly since T is almost a symmetric 
tridiagonal matrix (the exception being the 
minus sign). Various numerical packages have 
packages for tridiagonal matrices i.e. Numerical 
Recipes, et al. The most popular method seems 
to be a QR decomposition in finding the 
eigenvectors, whose convergence is guaranteed 
to be quick. The procedure breaks down with 
multiple eigenvalues but significant extensions 
have been made to handle these special cases. It 
is the loss of orthogonality in finite precision 
that presents a far more serious problem. 
 
Lanczos method with finite precision;  
loss of orthogonality 
 
In each step of the Lanczos procedure, there is 
an inherent round-off error in the step: 

                                                 
5 I was unable to find a proof of this, every treatment 
simply assumed it was so 
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1 1 1k k k k k k k xx Ax x x fβ γ α+ − −= − − +  

1 1 1
T T T T

k k k k k k k yy y A y yγ β α+ − −= − − + f  
 
These errors accumulate and influence the 

kδ term which will approach zero. When this 
happens the Lanczos procedure terminates and 
cannot be continued. The local orthogonality 
can be measured by the following metric: 
 

1

1

| |
|| || || ||

T
k k

x
k k

x x
x x

ε +

+

=  

 
And likewise for the y vectors. The most drastic 
procedure, recommended by Lanczos, was to 
orthogonalize each new vector to the previous 
ones using the Gram-Schmidt process. This is a 
computationally expensive operation, and one 
that initially lead to the rejection of the Lanczos 
procedures. In more recent times, it has been 
realized that a full orthogonalization is not 
necessary, rather an adapted partial convergence 
algorithm is sufficient. 
 
Symmetric Block Lanczos6: 
The symmetric block method is where the real 
power of the Lanczos procedure shines. We will 
construct blocks of Lanczos vectors of size b. 
Once we have chosen a block size, it is only 
necessarily to access the matrix A for each 
block, rather than for each vector. If the speed 
of I/O operations is a critical bottleneck (which 
often is the case when n is large enough) the 
Lanczos method essentially results in a b-fold 
reduction in I/O access.  
 
Since the Lanczos process is an iterative one, it 
converges on the eigenvector solution. Based 
off the geometry of the converge it naturally 
finds the extremal eigenvalues first. This may be 
a welcome event, but in event that the user 
wishes to find the eigenvalues in a spectral 
range, the procedure can be modified to 
converge along any spectral range known a 
priori. Often in industrial applications, the 

                                                 
6 Golub, Matrix Computations.  

spectral range is well known so the method is 
well suited for such problems. Since each 
calculation is essentially independent, the 
implementation is begging for parallelization.  
 
Now consider the block matrix: 

1 1

1 2 2

1

1

T

T
T

j T
r

r r

M B
B M B

Q AQ T
B

B M
−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
#

 

 
With an orthogonal Q such that: 

1,[ , rQ X X ]= …  
 
We can establish a similar three member 
recurrence as the previous problem by equating 
columns by noting that AQ QT= , thus 

1 1 1
T

j j j j j j jAX X B X M X B− − += + +  
 
Again, we define an intermediate: 

1 1
T

j j j j j jR AX X M X B− −= − −  
 
Which allows us to calculate the elements of X 
and B, by taking the QR decomposition: 

1j j jX B R+ =  
 
And iteratively, calculating the next element of 
the matrix: 

1 1
T

1j j jM X AX+ + +=  
 
With the appropriate transformations, T can be 
reduced to a scalar (non-block) tridiagonal form. 
The solution is now of size J = j*b, where J << 
n.  
 
The loss of orthogonality is even more 
complicated in this case. Any serious code will 
have to deal with each of these issues to the 
desired accuracy. Without going into detail, 
there are three types: 
 
1] internal – within the current block 
2] local – with respect the previous block 
3] global – with respect to all previous blocks 
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Sample Calculation in exact arithmetic: 
This presentation is similar to that of Komzsik7 
but fewer of the intermediate steps are worked 
out. Given the unsymmetrical 3x3 matrix: 

1/ 2 1/ 2 1/ 2
0 0 2

3/ 2 1/ 2 9 / 2
A

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

 

 
With the starting vectors randomly selected 
(which do not have to be orthogonal, as in this 
case): 

1 1

1 1
0            y 1/ 2
1 1

x
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

/ 2

/ 2
−

1/ 2

3/ 2−

 

 
We can find the first intermediate vectors: 

1 1 1 1

1
2            w 1/ 2
3

Tz Ax A y
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= = = = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

 
Get first Lanczos coefficient and update our 
intermediates: 

1 1 1 1Ty zα = =  

1 1 1 1 1 1

0
2
2

k kz z x xα γ − −

⎡ ⎤
⎢ ⎥= − − = ⎢ ⎥
⎢ ⎥−⎣ ⎦

 

1 1 1 1 1 1

1
w w 1

1

T
k ky yα β − −

−⎡ ⎤
⎢ ⎥= − − = ⎢ ⎥
⎢ ⎥−⎣ ⎦

 

The next Lanczos coefficients are: 

1 1 1 1 14           = 2Tv z 1δ β δ γ= = = =  
 

The next iteration of the Lanczos procedure 
requires the normalization: 

1 1
2 2

1 1

0 1
1            y 1/ 2
1

z wx
β γ

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

/ 2

1/ 2−
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7 Komzsik, The Lanczos Method 

The process is repeated for the next iteration, 
yielding the next block of coefficients and 
Lanczos vectors: 

2 2

1 1
1            y 1/ 2

0 1
x

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢= − = − ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢− ⎥⎣ ⎦ ⎣ ⎦

 

 
When the process is completed we have: 

3

1 2 0
2 3 1
0 1 1

T
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
While T matrix seems underwhelming8 in 
comparison to the work done, we have 
calculated along the way the Lanczos vectors. 
This enables us to find the eigenvalues of T, [1, 
2± 6 ] which are the same as those in A. In 
finite precision, as evidenced by the code in the 
Appendix gives the same T exactly, so the loss 
of orthogonality is not an issue when n is small.  
 
Scientific code available online: 
While coding is always an enjoyable endeavor, 
the scientific community would never advance 
if every paper had to re-derive each equation 
from scratch. The internet is a vast repository of 
numerical code, Lanczos included. Listed below 
is a partial list of such codes: 
 
Netlib, a collection of mathematical software, 
papers, and databases (FORTRAN): 
http://www.netlib.org/lanczos/
 
UC Davis has Lanczos in several languages (C, 
C++, FORTRAN) for different flavors of 
matrices: 
http://www.cs.ucdavis.edu/~bai/ET/lanczos_met
hods/lanczos_methods.html
 
An implementation (C) of the square-shift 
method (not discussed in this paper): 
http://angel.elte.hu/lanczos/
 

                                                 
8 A 3x3 tridiagonal matrix isn’t that different from an 
unsymmetrical one anyways! 
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Appendix: 
Code  to calculate the Lanczos vectors: 
Highlights were used to illustrate the Lanczos 
procedure. The rest of the code consists of 
formatting and simple Matrix operations. 
 
/* Easily adaptable code for calculating the 
Lanczos vectors of a given matrix. Extensions 
can be made to improve numerical stability by 
any orthogonlization procedure due to the 
inherent instabilities of finite precision. - 
Travis Hoppe, 3.7.05 */ 
 
#include <iostream> 
#include <iomanip> 
#include <cmath> 
#include "nrutil.h" 
using namespace std; 
int N=3; 
 
// Matrix operations 
void MdV( double ** A, double * b, double * out 
) { 
  int i,j;double value=0; 
  for(j=0;j<N;j++){ 
    for(i=0,value=0;i<N;i++) 
      value+=A[j][i]*b[i]; 
    out[j] = value;  }} 
 
void VTdM( double * bT, double ** A, double * 
out) { 
  int i,j;double value=0; 
  for(j=0;j<N;j++){ 
    for(i=0,value=0;i<N;i++) 
      value+=A[i][j]*bT[i]; 
    out[j] = value;  }} 
 
void VTdV( double *bT, double * c, double & out) 
{ 
  out = 0; 
  for(int i=0;i<N;i++) 
    out += bT[i]*c[i]; } 
 
void VmV( double *b, double & s, double *c) { 
  for(int i=0;i<N;i++) 
    b[i] -= s * c[i]; } 
 
void VdS( double *b, double s) { 
  for(int i=0;i<N;i++) 
    b[i] *= s; } 
 
// Various outputs 
void printV( double * b ) { 
  cout << " ["; 
  for(int i=0;i<N;i++) 
    cout << setw(8) << b[i]; cout << "] "; } 
 
void printV( double * b, int offset ) { 
  cout << " ["; 
  for(int i=0+offset;i<N+offset;i++) 
    cout << setw(8) << b[i]; cout << "] "; } 
 
int main() { 
 
  // allocate space for the variables 
  int i,j,k; 
  double ** A    = dmatrix(0,N,0,N); 
  double ** T    = dmatrix(0,N,0,N); 
  double *x[N+1],*y[N+1],*z[N+1],*w[N+1]; 
  double *alpha = dvector(0,N+1); 
  double *beta  = dvector(0,N+1); 

  double *gamma = dvector(0,N+1); 
  double delta; 
 
  for(i=0;i<N+1;i++) { 
    x[i] = dvector(0,N); 
    y[i] = dvector(0,N); 
    z[i] = dvector(0,N); 
    w[i] = dvector(0,N); } 
 
  // set the sample matrix up 
  A[0][0]=.5;  A[0][1]=.5;  A[0][2]=-.5; 
  A[1][0]= 0;  A[1][1]= 0;  A[1][2]=- 2; 
  A[2][0]=1.5; A[2][1]=-.5; A[2][2]=4.5; 
  x[1][0]=1;   x[1][1]=0;   x[1][2]=-1; 
  y[1][0]=.5;  y[1][1]=-.5; y[1][2]=-.5; 
 
  // calculate the Lanczos vectors 
  for(k=1;k<N;k++) { 
         
    MdV (A,x[k],z[k]); 
    VTdM(y[k],A,w[k]); 
    VTdV(y[k],z[k],alpha[k]); 
 
    VmV (z[k],alpha[k],x[k]); 
    VmV (z[k],gamma[k-1],x[k-1]); 
 
    VmV (w[k],alpha[k],y[k]); 
    VmV (w[k],beta[k-1] ,y[k-1]); 
 
    VTdV(w[k],z[k],delta); 
    beta[k] = sqrt(abs(delta)); 
 
    gamma[k] = beta[k]; 
    if(gamma[k]<0) gamma[k] *= -1; 
         
    x[k+1] = z[k]; 
    VdS(x[k+1], 1.0/beta[k]  ); 
   
    y[k+1] = w[k]; 
    VdS(y[k+1], 1.0/gamma[k] ); 
     
    cout << k << " -> "; 
    cout << "x "; printV(x[k]); 
    cout << "y "; printV(y[k]); 
    cout << alpha[k] << ' '  
         << beta[k] << ' ' << gamma[k]; 
    cout << endl; 
     
    cout << "     "; 
    cout << "v "; printV(z[k]); 
    cout << "w "; printV(w[k]); 
    cout << endl; 
 
  } 
 
  MdV (A,x[N],z[N]); 
  VmV (z[N],alpha[N],x[N]); 
  VTdV(y[N],z[N],alpha[N]); 
 
  // display the output 
  cout << k << " -> "; 
  cout << "x "; printV(x[N]); 
  cout << "y "; printV(y[N]); 
  cout << alpha[N] << endl; 
 
  cout << " -=-=-=-=-=-=-= " << endl; 
  cout << " diagonal: ";  printV(alpha,1);  cout 
<< " super-di: ";  printV(gamma,0); cout << 
endl; 
   
  return 0;} 
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