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Abstract

It is well established that multi-well bound state systems experience behavior similar to avoided 

crossings, as degeneracies in the wave function due to identical bound states are avoided by shifting 

bound state energies corresponding to various wells slightly, creating a familiar set of alternating bands 

and band gaps, with the bands consisting of a set of bound states that are associated with wells within 

in the multi well potential. Moreover, the existence of transmission resonances within the multi-peak 

potential is also well documented, with these transmission resonances occurring when the energy of an 

incoming wave approaches the energy of one of the bond states of a multi-well potential. However, the 

exact shape of the wave function, and, thus the probability distribution of the particle represented by 

the incoming wave is not as well described for a system at a transmission resonance In fact, it is not 

well known whether the probability distribution of the particle within the multi-peak system is affected 

by the number of wells within the system. The aim of this paper is to establish the effect of  the number 

of wells on the probability density of a particle, which, appears to be a decaying exponential. 

Preliminaries

Let us consider a 1-dimensional system of N identical rectangular peaks surrounded by a region 

of zero potential (see figure 1 for a visual representation). An incoming wave from infinity to the 

system can be described by a pure freely traveling wave, which can be represented in a basis of E^ikx 

and E^-ikx where k represents the wave number of the particle and x is a position co-ordinate. At a 

transmission resonance, the wave function will approach the state [1,0], as in, the wave function 

consists solely of a right-traveling wave, i.e. pure transmission. At the left edge of such a system, the 

wave function will again be a pure scattering state with all of the wave right-traveling [1,0] again. 

However, inside of the system, the wave cannot be described as a scattering state, as it is bound with a 



set of “wells,” similar to a multi-well potential (see figure 2 for a visual representation), but with 

slightly differing boundary conditions. Instead, the wave function will be a set of sins and cosines, each 

with some amplitude, as each well can be roughly treated as a single square “well” of finite depth. The 

natural way to describe this would be to shift to another basis inside of the “multi-well” system, and to 

solve the Schroedinger equation in this basis. However, a more elegant way to describe this system is to 

take advantage of a transfer matrix, with with we can represent the state inside each well in terms of 

our original scattering basis.  

Physically, each time the particle passes through a peak, the wave function picks up the transfer 

matrix, e.g |phi(n)> = T*|phi(n-1)>. It is obvious that this transfer matrix is subject to a number of 

constraints, foremost of which is the fact that the application of N such transfer matrices will return the 

original wave function, as the particle is in an identical state at either side of the multi-peak potential. 

Thus, instead of the previous approach, we can instead consider a case in which, instead of picking up a 

copy of the transfer matrix each time the particle passes through a peak, the particle will lose a copy of 

the transfer matrix each time it passes through a peak e.g. |phi(n-1)> = T*|phi(n)>.  Either approach is 

equally valid, however, for the purposes of this paper, the first approach will be the one used. A further 

discussion of the exact methodology can be found in the methods and procedures section.

As previously noted, each transmission resonance in the multi-peak system, and, thus, energy 

chosen for analysis corresponds to a bound state in a multi-well system. Obviously, the wave function 

for a multi-peak potential does not correspond exactly to the wave function  for a multi-well potential, 

but, it would be likely that some of the symmetry properties of the multi-peak system would be similar 

to the symmetry properties of a multi-well system. Moreover, the band/ band-gap structure of a multi-

well potential should be familiar to solid state physicists, and, to non-solid state physicists, offer an 

easy foothold to the system under consideration. Therefore, a review of the symmetry properties of the 

multi-well system is in order.  

In a multiwell potential similar to the multi-peak potential involved under analysis in this paper, 

each bound state in a band can be associated with a certain symmetry in the wavefunction, with lower 



energies corresponding to more fundamental symmetries. For example, consider the case of a three 

well system. Bound states in such a system alternate between even and odd parity, while, at the same 

time, alternating between even and odd symmetry. A visual example will help to illustrate this point: 

(insert picture). It's easy to see that each state maintains some level of symmetry, while, at the same 

time, varying the type of symmetry shown, symmetry, anti-symmetry, and “three-fold symmetry”. 

This example also helps to illustrate that the wavefunction does not have to have components in 

all of the parts of a multi-piece system. The case of anti-symmetry, for example, has a probability 

density of zero in the middle well. Thus, it seems that examination of the probability density in any 

particular well as a function of state will only result in confusion; only through an examination of the 

probability densities across all wells can we fully understand the effect of increasing or decreasing the 

number of peaks in the system on the probability of finding a particle inside of the system of peaks. Of 

course, this analysis has been concerned with bound states of a multi-well system, rather than 

transmission resonances of a multi-peak system, but, an understanding of the simpler multi-well system 

can only aid in understanding the nature of the multi-peak system.  However, the time has come to shift 

our analysis to the system at hand, the multi-peak system. 

Methods and Procedures

As noted in the preliminaries section, the basic tool that will be used for analysis of the multi-

peak wave function is the transmission matrix. As noted in Elementary Quantum Mechanics in One 

Dimension (Gilmore, 04) a piecewise constant potential can be described by taking an initial wave 

function and applying successive transfer matrices to it. In fact, the multi-peak system is one of the 

examples given of a system which is well-suited to this sort of analysis. However, the challenge of this 

approach is that, in order to compute the full probability density of a particle inside of the system, one 

needs to stop after each application of a transfer matrix and integrate the wave function over the region 

described. A visual representation of the process can be found here: (Insert flowchart). 

Calculation of the transfer matrix for each portion of the piecewise potential is fairly 



straightforward, following the method laid out in Gilmore 04, however, the transfer matrix, rather than 

being a 2x2 complex matrix, is instead a 2x2 complex matrix, which is accomplished by transforming 

into the sin/cos or sinh/cosh set of basis states, depending on if the wavefunction is being evaluated in a 

valley or a peak. 

The integral of the wave function in each region can be performed analytically, however, due to 

the number of regions to be evaluated, such a step is impractical. Instead, integration over each region 

is handled via a system of Riemann rectangle While this method introduces errors of  second order, this 

loss of accuracy is small enough not to have a major effect on calculations of the wave functions of 

interest. Another challenge comes from picking energies at which to evaluate the system. The exact 

energies that correspond to transmission resonances change as the number of peaks in the system 

changes, which means, in order to keep examining the behavior of the wave function at a particular 

transmission peak, the energy of the system must change. As the energy of the system changes, the 

ratio of the wave function outside to the wave function inside changes, as the wave functions inside the 

set of barriers look less and less like bound state waves and more and more like freely moving waves. 

Thankfully, the effect of energy change on the wave function of the particle inside of the system 

of peaks has already been characterized. The ratio between the exterior and interior wave function goes 

as exp ∫  m /h2
∗V−E dx  (integrated over the entirety of the potential) (Gilmore, Class notes), 

and, moreover, since the exact probability density of the exterior wave function can be known at a 

transmission resonance, this effect can be filtered out of calculations, allowing for targeted examination 

of the effect of peak number of probability density. 

The problem remains, of course, of identifying the energies of transmissions resonances. This 

problem is actually fairly straightforward when cyclic boundary conditions are applied. One computes 

the transmission matrix for a single unit cell, where a cell corresponds to a pair of peaks and the valley 

between them, and then computes the traces of this matrix. Then, when (cos 2*pi*k/N) = 1/2(trace), 

where N is the number of “cells”  in the potential and k is an integer that varies between 0 and N-1, we 



see a transmission resonance Thus, finding the energy to evaluate the wave function at in order to 

examine the behavior at transmission resonances can be done quickly and efficiently, if the system is 

subject to cyclic boundary conditions. 

Since this paper is interested in the behavior of the wave function as a result of modifying the 

number of peaks, rather than the effect of boundary conditions on the wavefunction, it behoove us to 

choose the boundary condition that makes calculation the simplest Furthermore, the assumption of 

cyclic boundary conditions has some resonance in the “real world” of physics. Consider the case of a 

highly energy electron scattering from a metal target, something that is well described by a lattice of N 

“peaks” with a cyclic boundary condition.  

Thus, we have all of the components needed to examine the probability density of the wave 

function inside an n-peak system with cyclic boundary conditions: the energies to examine the wave 

function at, how to calculate the wave function in each unit, and how to integrate the wave function 

once it has been calculated, all of which can be accomplished by a single python program1. The only 

problem with this approach is that we're forced to examine behavior at transmission resonances, and, 

moreover, are limited to calculating probability densities, rather than true probabilities, however, 

outside of transmission resonances, the problem rapidly spirals out of control, as the group-theoretic 

approach of using a transmission matrix no-longer works, and one would need to apply and re-apply 

the Schroedinger equation in each piecewise part of the potential.

Results

The results of the calculations described above can be neatly summarized on a graph, contained 

in appendix II. The graph plots the summed probability density of all parts of the well, on the y axis, vs. 

1 For the code used in this program, consult appendix I. 



the number of peaks, on the x axis. The first portions of the graph are dominated by very sharp swings 

in the summed value of the probability of finding the particle within the well. This is due to the fact 

that, for small N, the change in energy between transmission resonances (bound states of the multi-well 

potential) is very large, so the energy effects dominate the effect ( in fact, at N = 4 and 6, there's a large 

drop in probability as the program finds the resonance at E ~3 (~2 for the case of N = 6), rather than the 

standard resonance at E ~4.7.  However, as the number of barriers increases, the change in energy 

between any two wells becomes very small, so the dominating effect is the change in the number of 

peaks.

The total summed probability levels off as we approach N = 50 ( the limit of the simulation), 

however, there remains a slow downward trend. This suggests  the effect of increasing N on the 

summed probabilities seems to a have a roughly exponential dependence, once one factors out the 

energy effects. This is entirely reasonable, as the particle will not remain bound to the system, and, so, 

must escape, and, moreover, the size of the system is increasing with N, we would expect the chance of 

finding the ball in any particular portion of the potential to drop in which a manner. The fact that the 

probability continues to have a sharp difference between different N's is somewhat disconcerting, and 

might be the result of a problem in re-normalizing the probability. 

 



Conclusions

The use of transfer matrices in multi-barrier potentials allows for easier, faster, and, above all, 

simper calculation of the wave function of a particle passing through the potential. However, the effect 

of adding additional barriers to the potential on the probability density of the wave function inside is 

somewhat unusual, at least at first glance. However, since for a free particle we can only deal with 

probability density, rather than true probability, and since the particle must escape the barriers, as we're 

examining a transmission resonance, the fact that the probability density decays exponentially is less 

remarkable. However, the need to normalize the probability, and the fact that the exact energy that we 

can evaluate the system at changes as we introduce additional barriers, since the locations of the 

transmission resonances change, there are unusual effects which creep in and may cast doubt on the 

results of this computation. 

Further work which examines the change in the probability density through a very large number 

of peaks would help to confirm or deny the underlying exponential decay that of the probability 

density. Moreover, a re-write of the code using a higher-order integration technique than Riemann 

rectangles would help to reduce the error. Finally, an examination of the effect with different boundary 

conditions would be very useful, as a lot of the “weirdness” in the probability density might be the 

result of the boundary condition, which effective extends the potential over an infinite space. 
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Appendix I

Program

import numpy

import pylab

from math import *

Data = []

N = 1

while  N <=50:

 V = 5.0 #Peak height

 D = 2.0 # Peak Width

 energy = .0001

 L = 6.0 # Well Width

 T = []

 alpha = [0,0]

 beta = [0,0]

 dE = .0001

 E = []

# Transmission matrix of a unit cell

 i = 0

 Trig = 0

 while 1==1:

k0 = .5125*sqrt(energy)

k = .5125*sqrt(V-energy)

matpeak= [cosh(k*D), sinh(k*D)], [-k/k0*sinh(k*D),k/k0*cosh(k*D)]

matvalley = [cos(k0*L), sin(k0*L)], [-k0/k*sin(k0*L), k0/k*cos(k0*L)]



M = numpy.dot(matpeak, matvalley)

Matrix = numpy.dot(matpeak, matvalley)

m = 1

while m < N-1:

Matrix = numpy.dot(Matrix, M)

m += 1

Matrix = numpy.dot(Matrix, matpeak)

alpha[0] = (Matrix[0][0] + Matrix[1][1])/2

beta[0] = (Matrix[0][0] - Matrix[1][1])/2

alpha[1] = -.5*(k0*Matrix[0][1]+Matrix[1][0]/k0)

beta[1] = .5*(k0*Matrix[0][1]-Matrix[1][0]/k0)

T = [alpha[0] + alpha[1], beta[0]+beta[1]],[ beta[0]+beta[1], alpha[0] - alpha[1]]

Tr = T[0][0] + T[1][1]

#this loop will cycle until we find a transmission resonance

for m in range(N):

   if abs(.5*Tr- cos(2*pi*m/N)) <= .001:

     Trig = 1

             #print "Found one"

     break 

        if Trig == 1: break

energy += dE

i +=1 

 print energy

#now to calculate the wave functions for each bit

 Initial = [1,1] #wave function is purely right traveling

#WF's are from left to right



 i = 0 

 WF = [[1,0 + 1J]]

 while i< 2*N-1:

   if i%2 == 0:

      T = [cosh(k0*D), sinh(k0*D)], [-k0/k*sinh(k0*D),k0/k*cosh(k0*D)]

   else: 

       T = [cos(k*L), sin(k*L)], [-k/k0*sin(k*L), k/k0*cos(k*L)]

   WF.append(numpy.dot(T, WF[i]))

   i += 1

#let's normalize

 check = WF[2*N-1]

 x = check[0] + check[1]

 norm = abs((x.real+x.imag)*(x.real-x.imag))

 i = 1

 while i <= 2*N-1:

WF[i] = 1/sqrt(norm)*WF[i]

i +=1 

 #print WF[2*N-1]

#alright, now, theoretically, we have some wave functions, time to integrate!

#since they're sin and cos, or sinh and cosh, it shouldn't cause a huge problem, as they don't freak out in 

the range we're examining

 i = 1

 Prob = 0

 while i < 2*N-1:

   j = 0

   while j <10:



       if i%2 == 0:

       x= (WF[i][0]*cosh(k0*j/D))+ (WF[i][1]*sinh(k0*j/D))

      # print  1/D*(x.real +x.imag)*(x.real - x.imag)

       Prob += abs(1/D*(x.real +x.imag)*(x.real - x.imag))

       else:

       y= (WF[i][0]*cos(k*j/L)+ (WF[i][1]*sin(k*j/L)))

       Prob += abs(1/L*(y.real +y.imag)*(y.real-y.imag))

       j +=1

   i+= 1

 #print Prob

 Data.append(Prob)

 N += 1

 print N

pylab.plot(Data)

pylab.show()



Appendix II

The Graph


