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Introduction 
 With recent advancements in photonics, we have been able carry vast amounts of 
information across oceans with exceptional clarity.  This has been made possible by the 
development of wires coated in a material of a specific dielectric constant to block the 
passage of a certain band of wavelengths.  The hope born of this accomplishment was 
that optics would one day replace electronic circuits.  The issue here was that because of 
diffraction constraints, the width of the medium a wave passes through must be at least 
half the light’s wavelength.  For infrared light, with wavelengths around 1,500 
nanometers, this would require devices of at least 750 nanometers in width.  This is not a 
significant step up from some of our current circuits, some of which have components 
smaller than 100 nanometers.  Scientists are now searching for a solution to this problem 
in plasmonics. 
 
Background 
 Photonics can be simply described as utilizing sections of nonconductive material 
with alternating dielectric constants to create a band gap of frequencies that are 
completely rejected.  These can be used in conjunction with sections that allow the 
specified wavelengths to create waveguides.  Plasmonics, on the other hand, relies on a 
metal-dielectric interface to capture or reflect certain wavelengths of light.  Normally, 
metal is a poor choice for optics, as the field induced in the metal interacts with free 
electrons deeper in the metal which collide with other free electrons, interrupting the 
oscillations and causing the field to dissipate.  By placing a nonconductive dielectric on 
top of the metal, we can allow the field to extend into the dielectric, where there are no 
free electrons, while still interacting with the surface electrons in the metal.  This 
produces a scenario in which a wave of electrons, along with its field carried in the 
dielectric, can progress along a path defined by the plane between the two materials.  
This wave is called a plasmon. 
 This process results in the progression of a wave at a wavelength reduced by the 
reduction in the traveling speed of the wave.  Normally, light waves are calculated at the 
speed of light, which forces any reduction in wavelength to require a similar increase in 
frequency.  In this case, however, the transition from a light wave to an oscillation of 
electrons slows the wave progression, allowing a proportional decrease in wavelength.  
This would allow for the creation of small waveguides or junctions that compress the 
incident light and eject it at the end of the guide.  This is a key step towards creating 
small scale light-based circuitry.  For the simple case of a dielectric with a thin metal film, 



the wavelengths and frequencies of the plasmons can be adjusted by choosing different 
thicknesses of the film and could carry as far as a few centimeters before dying out.  
Structures of this type could be manipulated to replicate electronic devices, but the 
electric fields produced would be too large to convey signals at the nanoscale level.  To 
solve this issue, a few nanostructures have been explored that have produced interesting 
results. 
 
Nanoshell Plasmons 
 Rather than place the dielectric around the metal, structures have been fabricated 
that consist of a dielectric core with a metal shell deposited around it.  These “nanoshells” 
can be described in terms of their inner and outer radii.  This type of structure provides 
two interfaces, or plasmons, that interact to create resonance frequencies based on the 
shell size.  These frequencies are determined as a function of the bulk plasmon frequency, 
which is described as: 
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Where e is the electron charge, n0 is the uniform electron gas density, and me is the mass 
of an electron.  The resonant frequencies of the individual plasmons can be found by 
evaluating the Lagrangian of a charged, incompressible, irrotational fluid1: 
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In this function, the deformation of the fluid is described in terms of the scalar function 
η2: 
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Where a and b describe the inner and outer radius of the shell, and the lmC& and lmS&  
functions describe the amplitude of the cavity and sphere plasmons, respectively.  The 
values l and m are called the multipolar index and azimuthal angle.  The surface charge σ 
is also described as the time integral of a normal derivative of this deformation function1:  
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The deformation function is expressed as a normal derivative in both this case and in the 
Lagrangian, so it would help to define it here: 
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We can now express σ as an integral of this function over time.  To do so, we will make 
the assumption that the ( )tClm and ( )tSlm  functions are of the form: 
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This allows us to express σ as: 
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We can now calculate the kinetic term of the Lagrangian: 
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Here we should note that the spherical harmonic functions serve to eliminate any 
elements that have unequal multipolar indexes or azimuthal angles (l or m) by means of 
the following equality: 
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This allows us to retain our summation in its proper form.  The potential term of the 
Lagrangian is a bit more difficult.  For the individual sphere and cavity plasmons, we do 
not need to consider coupling between the two.  This allows us to express the following 
portion in this form: 
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The expanded form for both integrals appears as such:  
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In order to integrate these functions, we need to employ multipole expansion.  We can 
choose a simplified form, as the charge density is independent of the azimuthal angle φ.  
This allows us to assume that all m=0 and the function is a sum of l only.  The expansion 
occurs in the following form: 
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Where is r< the minimum value of (r, r’) and r> is the maximum.  This corresponds to an 
interior moment for the cavity term and an exterior moment for the sphere term.  
Applying the expansion results in: 
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We can now write out the Lagrangian for the whole, uncoupled system. 
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Next we use the Euler-Lagrange equations to develop a matrix describing our system.  
We can separated these into matrices M and K for each part of the equation: 
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The matrices can now be subtracted and we can evaluate the determinant for the 
frequency. 
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After substituting in for the bulk frequency and dividing out the outside constants and 
matrices into zero, we arrive at the following polynomial expression: 
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Factoring these will yeild the vibration frequencies of the cavity and sphere plasmons. 
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In the same manner, we could add coupling to the Lagrangian and would arrive at the 
hybridization frequencies of the nanosphere1. 
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These frequency equations reflect the asymmetric and symmetric coupling between the 
two plasmon modes.  The asymmetric mode | +  interacts weakly with the interacting 
optic field, while the symmetric mode | – , the lower energy of the two, interacts strongly. 

 
Figure 1. Energy level diagram of resonant modes5 

 Structures of this type have been successfully fabricated on the scale of 50 to 
more than 100 nanometers and have responded as expected from the calculations.  One 
method for developing nanoshells consists of a reduction of tetrachloroauric acid with 
sulfide ions, which results in a Au2S core with a gold shell layer.  Other methods allow 
for the growth of the core separate from the shell, which allows much more control and 
precision in the design of nanoshells.  This type of structure, however, has a tendency to 
peak sharply at a certain wavelength, which doesn’t allow much freedom in designing a 
means of transporting information.  Another nanoparticle, the nanoegg, can provide us 
with another degree of adjustability to our system. 
 
Nanoegg 
 In a spherical nanoshell, the resonance between modes occurs only with those of 
the same multipolar index l.  In a nanoegg, the center of the dielectric core is offset by a 
distance D.  This offset allows all modes of the sphere and shell plasmons to hybridize to 
a certain degree.  This causes the initially sharp peaks to spread and shift to higher 



frequencies.  The result is a wide, multipeaked response that increases in complexity with 
increasing D. 

 
Figure 2.  (A)  Schematic of plasmon hybridization in nanoshell (Left) and nanoegg (Right).  (B) 
Calculated l = 1-5 plasmon energies as a function of core offset for parallel polarization (Left) and 
perpendicular polarization (Center).   (Right) Theoretical spectra as a function of the offset D for a 

(39,48) nm Au nanoshell with a vacuum cores2 
 
These nanoeggs can be produced by depositing Au on already fabricated nanoshells.  In 
this manner, the thinnest portion is dictated by the shell thickness initially and the offset 
can then be adjusted by the amount of Au deposited on one side of the nanoshell. 
 
Nanomatryushkas 
 Another method of adding control to the frequency response has been titled 
“nanomatryushka.”  A nanomatryushka is a concentric nanoshell composed of a dielectric 
core with alternating layers of dielectric and metal laid on top.  This structure not only 
allows adjustment of the response of individual nanoshells by means of their radii 
(a1,2,b1,2), but also adjustment of their coupling by means of the thickness of the dielectric 
spacer |a2-b1|. 
 



 
Figure 3. Nanomatryushka structure and response5 

Image A on the left describes the basic structure of the nanomatryushka.  B below it 
shows the energy structure of the system based on plasmon symmetry.  The images on 
the right show an example of differing sizes of nanomatryushka.  The red lines show 
theoretical extinction spectra, while the blue lines show experimental spectra.  The 
smaller shell shows distinctly coupled peaks, while the nanomatryushka with larger outer 
shells exhibit low to almost no coupling.  The dimensions for these structures are: A 
(a1/b1/a2/b2) = (80/107/135/157), B (77/102/141/145), C (396/418/654/693) with all 
values in nanometers. 
 
Potential Uses 
 As stated before, the main draw of plasmonics is the ability to squeeze high 
frequency light into nanoscale waveguides that would allow for fast transmission of large 
amounts of data.  The hope is that optics will one day replace electronic circuits and 
drastically increase processing potential.  There have been a few ideas along these lines 
as well as a few others that have sprung out of the natural course of experimentation. 
 One of the more interesting uses stems from the nanostructure’s ability to absorb 
light as heat as well as the biocompatibility of gold.  Researchers have found that the gold 
plated nanoshells can be injected into the body without adverse effect.  For testing 
purposes, they have been injected into the bloodstream of mice with cancerous tumors.  
The shells were found to have been deposited more on cancerous tissue than healthy ones, 
due to the heavy flow to the rapidly growing tumors.  These shells were then targeted 
with infrared radiation at a wavelength that passes through animal tissue.  The resonant 



absorption raised the temperature of the cells from about 37 degrees Celsius to about 45 
degrees, killing the cancer cells while leaving healthy tissue unharmed.  In the mice 
treated this way, all signs of cancer disappeared within 10 days, while tumors of the mice 
in the control group continued to grow rapidly. 
 Another proposed use involves a trait plasmonics discovered in the 1980s.  It has 
been found that by enhancing the field in the dielectric, the emission rate of luminescent 
dyes near the metal’s surface can be increased.  This could potentially allow the 
fabrication of LEDs that shine just as brightly as traditional light sources.  Systems have 
been created that couple silver or gold nanostructures with quantum dot arrays that boost 
emission by about 10 times.  The hope is that eventually plasmonics will enable the 
creation of bright LEDs made out of cheap materials, such as silicon. 
 Another idea that has attracted a lot of attention is the potential use of 
nanostructures to create an invisibility cloak.  It has been shown that by exciting a 
plasmon with radiation at a frequency close to its resonant frequency makes the 
structure’s refractive index equivalent to that of air.  It would be possible to create an 
object that, for a certain band of wavelengths, would appear to be invisible.  This, 
however, would not apply to anything inside the object.  The next step would be to create 
a method of diverting the light around the contents of the invisibility container and out 
the back in the same direction and intensity as light incident on the container.  Though 
difficult, some scientists believe it possible. 
 
Conclusion 
 Plasmonics appears to be paving the way towards optical circuitry.  By providing 
a method of shrinking the wavelength of our information medium, we can now use 
smaller and more complex structures to process and deliver the information.  Even with 
the length limitation dictated by field dissipation, plasmonics has found many uses as 
junctions and waveguides and some uses far outside those initially considered.  The 
possibilities available due the advent of plasmonics gives it promise far exceeding that of 
photonics.   
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