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Abstract

Cooper Pairs make up the backbone of the generally accepted BSC Theory of su-

perconductivity. We attempt to look at the historical significance of the formulation

of the pairs as well as go through their derivation. We start with the discovery of su-

perfluidity in Helium. Using Landau’s explanation of the formation of a Bose-Einstein

Condensate of Helium atoms as a springboard, we attempt to apply the theory to su-

perconductivity. We discuss how the Pauli Exclusion Principle prevents us from using

the model on superconducting metals. We attempt to replicate Cooper’s derivation of

attracting electron interactions mediated by a phonon, called Cooper Pairs. Finally

we discuss the application of Cooper Pairs to the more encompassing BCS Theory.

1 Background

Superconductivity in metals is not a new phenomenon. Far from it, the effect was first

found in 1911 by H.Kamerling Onnes only three years after having first liquified Helium.
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Superconductivity, the state in which certain metals lose all resistance allowing current

to flow without an applied potential, requires incredibly low temperatures, something

Onnes was able to reach with his newfound refrigeration techniques with Helium.[7]

Thirty-six years later, Kapitsa discovered the superfluidity of liquid helium. Kapitsa

observed that liquid helium, when moving through relatively thin channels with a

speed below a critical velocity, experiences no viscosity, no resistance along within

the channel.[4] Several years later Landau emerged with an explaination, stating that

the helium atoms are bosons (particles with integer spin) and thus fall into a single

wavefunction as a Bose-Einstein Condensate.

The enigma of the superconductive mechanism found in some, but not all, metals

had baffled the scientific community for nearly half a century. Such emphasis was

placed on the phenomenological explanation or description of these metals, yet the

physics community failed to grasp the fundamental mechanism responsible for super-

conductivity. Feynman put it eloquently, saying,

“... we do not understand, more or less, how superconductivity works

and I would like to address my attention to the is problem of understanding it

more or less, not of understanding the details of a lot of special phenomena.

In other words, I would like to concentrate here on the problem of inter-

pretation from first principles. We would like to connect the Schrödinger

equation directly to some experimental facts.” [3]

What’s interesting is not even a year after stating that criticism of emphasis of describ-

ing phenomena rather than understanding the underlying mechanism, Cooper pub-

lished his landmark paper on electron-pairs coupled by a phonon exchange/interaction.[2]

It is not coincidental that superfluidity and superconductivity share the same prefix.

They both seem to experience the same phenomenon of resistanceless movement. The

metals act like there is a superfluid of electrons moving without resistance within them.

Describing superconductivity using superfluid theories, while attractive was seemingly
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impossible as electrons were obviously not bosons, but rather fermions. Fermions

could not achieve the Bose-Einstein Condensate state needed for superfluidity. Unless

physicists could find a way to have these repulsive fermions even remotely attract

one another, or behave as one particle, there was no way to extend the theory of

superfluidity to superconductivity.

Electrons follow Fermi-Dirac statistics as they are fermions. The reason the Bose-

Einstein Condensate models were failing was because fermions must obey the Pauli

Exclusion Principle. The principle states that two identical fermions cannot occupy

the same state. A Bose-Einstein Condensate essential has a single, grand wavefunc-

tion describing the entire system of particles that it encompasses.[4] The problem with

trying to apply that with fermions, specifically electrons, is that two of the electrons

cannot share the exact same wavefunction, let alone all of them. Yet, the systems

behaved almost exactly like the analogous superfluids. There must be some fundamen-

tal mechanism that we were missing. Something that would couple pairs of electrons

together allowing them to act like bosons.

2 Derivation

We seek to derive an expression for the electron-phonon interaction needed to bind

a Cooper Pair in a metal. More specifically we strive to show that the interaction

term is negative, thus indicating that the interaction creates a bound state for the

two electrons. Let us begin by looking at two electrons hovering just above the Fermi

sphere in a metal. All of the energy states below our two electrons have been filled

and do not allow any other electron to occupy the same state via the Pauli Exclusion

Principle. This is illustrated in Figure 1. Considering only the two electrons then, a

set of wavefunctions can be built to satisfy plane-wave energies, which Cooper writes

as,

ϕ(k1,k2, r1, r2) =
1

V
exp[i(k1 · r1 + k2 · r2)] (1)
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while maintaining periodic boundary conditions in a box with volume V .[2] As Tinkham

points out, simply constructing the groundstate wavefunction requires k1 and k2 to

be of the same magnitude.[7] Replacing them with a single k, we must now take into

account the anti-symmetry of the total wavefunction. This means ϕ is either a sum of

products of cos[k·(r1−r2)] having an antisymmetric singlet spin state of (↑1↓2 − ↓1↑2),

or a sum of products of sin[k · (r1−r2)] having one of the symmetric triplet spin states

of (↑1↑2, ↑1↓2 + ↓1↑2, ↓1↓2). As we have stated at the very beginning of this derivation,

we expect the interaction between the electrons to be attractive. The singlet coupling

will give us a stronger interaction between the electrons the closer they are relative to

each other, given by cos[k · (r1 − r2)]. Using this we can construct our complete wave

equation which looks like,

Ψ(R) = [
�

k>kF

akcos(k ·R)](↑1↓2 − ↓1↑ 2) (2)

where R = (r1−r2), ak is a weighting factor, and kF is the wave number of the highest

occupied state in the Fermi sphere. We can now write the Schrödinger equation as,

�

k�>kF

ak�Hkk� = (E − �k)ak (3)

where �k are the combined energies of the electron pair above the Fermi surface, and

Hkk� are the matrix elements of the Hamiltonian in Cooper’s original derivation, or the

”interaction potential” as Tinkham explains it. Cooper elaborates writing the matrix

elements as,

Hkk� =
1

V

�
e
−i(k·R)

H(R)ei(k
�·R) (4)

but goes on to say that the actual H(R) can be approximated by

Hkk� =






−|F | for kF ≤ k, k
� ≤ km

0 otherwise

(5)
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where F is a constant, and (h̄2/m)(k2m − k
2
0) � 2h̄ωc � 0.2eV. Substituting this

interaction matrix element into equation 3, we can reduce, rearrange, and turn the

sum into an integral to obtain

1 = −|F |
� �m

�F

N(k, �)d�

E − �− εk
, with �− εk = �k (6)

requiring that N(k, �) is the density of states of electrons with momentum k. As Cooper

points out, to a good approximation N(k, �) � N(k, �0), allowing us to pull it out of

the integral. In this expression � can range from �F which is the highest filled energy

state on the Fermi sphere, to �m which is the maximum energy away from the sphere

the electrons can be, using the relations set out in defining the Hamiltonian matrix

elements. εk is the energy above the Fermi sphere of the pair of electrons. Integrating

we observe

1

N(k.�)|F | = ln
E − �m − εk

E − �F − εk
(7)

Solving for the eigenvalue energies, we can see that

E = �F + εk +∆ (8)

where

∆ = (�F − �m)/(e
1

N(k,�)|F | − 1). (9)

But we know �F < �m, so ∆ will never be positive. This subtle result is exactly what

we have striven to prove, that the binding energy of the electron pair interaction is

negative (i.e. attractive) for pairs of electrons above the Fermi surface with equal and

opposite k. And thus two electrons can, over a relatively large distance in a metal,

become attracted to one another via phonon interaction.
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Figure 1: This is a visual representation of the two electrons with( k,−k) or (k�,−k�) just
above the Fermi sphere.[6]

3 Conclusion

Now that we have successfully shown that two electrons can indeed be remotely at-

tracted to each other by way of a phonon interaction, we should take a step back and

ask ourselves what this means physically. What exactly is going on in the supercon-

ducting metals?

The first thing that we must realize is that all of the electrons in the metal are

interacting with each other and with the lattice surround them. This is what is called

the Landau quasiparticle or the Fermi Liquid of electrons.[5] The vibrations of the

lattice can be quantized, and these quantizations are what we call phonons. As an

electron moves by lattice points, it actively distorts the overall structure, attracting

the nearby positive nuclei. This distortion, in a sense, pulls on other electrons, thus

changing its original path. These distortions are exactly what we mean by phonons

and that is how the phonon interaction can mediate momentum from one electron

to another over relatively large distances. It is important to realize though that the

momentum change in the electron pair mediated by a phonon happens in conjunction

with all the other electrons above the Fermi sphere, all at the same time. This is truly

a complicated quantum system Cooper attempts to describe.

Looking back at our derivation, ∆ cannot ever be positive in our model. This is the

binding energy associated with the Cooper Pair. The negative allows us to say without
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a doubt that they are attracted to each other, yet their totally energy is not actually

less than zeros. It is also important to note that our derivation is only valid for a single

pair of electrons above the Fermi surface, not for the entire sum of electrons at T = 0.

That is what Bardeen, Cooper, and Schrieffer layout in their later letter to the editor

in February of 1957.[1] In that paper, they explain the full nature of BSC Theory, as

it has been come to call. BSC Theory takes into account the sum of the electrons

in the metal of a superconductor, describing their eventual fall into the Bose-Einstein

Condensate at T = 0.

We have successfully shown that two electrons, though both of negative charge and

fermion nature, can become briefly bound together. This interaction is mediated over

a relatively large distance by a scattering phonon. The electrons, we have found, must

be hovering above the Fermi Sphere to be able to interact with each other. All other

electrons for our outlined model are normal electrons occupying energy states less than

the Fermi energy. When two particles are bound in this phonon-mediated attraction

state, we call them a Cooper Pair. Cooper Pairs are the only way discovered so far, to

explain the electron Bose-Einstein Condensate present in superconductive metals.
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