
Introduction

 The Lennard-Jones potential is used relentlessly in chemistry and physics[2][3][4]

(Just the top few results from Google Scholar). It is often employed to model the van der

Waals effect in molecular collision simulations. The form of the Lennard-Jones potential

is very similar to:

which is the potential studied here. Normally this potential repels two particles away

from one another when they get too close. Since this is a 1-D quantum mechanics

project, I set V up as my potential barrier. In this case x refers to how far into the barrier

an electron has flown. Not exactly the same use as molecular collisions, but still

interesting. Bound states should still occur at the same energies. A bound state has a

particularly favorable resonance within the potential, the lowest bound state is often

referred to as the ground state in other projects and is the energy at which a half-length

wave fits in the potential and asymptotically approaches zero outside of the well.

Methods

 How does someone go about finding the bound states of a potential? That

depends on the type of potential being used. In my case it was a potential without

asymptotic or periodic boundary conditions. From the equation for my potential it is

obvious that it becomes really big really fast as x approaches 0. To avoid any

cataclysmic mathematical problems I decided to have my smallest value of x = 0.85 . By

setting the minimum x there I ensure a ʻreasonablyʼ large potential barrier on the left

side of the system. Additionally, I set the maximum value as x = 100.0 . Due to the

Brad Hubartt

1

V = c(
1

x12
− 1

x6
)

shape of the potential 100.0 seems to be close enough to infinity, a plot of my potential

is below.

As can be seen, the potential is already ʻessentiallyʼ zero by the time the electron would

get to x = 2, so by x = 100 it should be a fairly reasonable approximation to infinity. Due

to the nature of my potential, and having a nice function, I used the sine transform

method to find the bound states.

 This method works by coupling the wave function with its second derivative and

integrating via the Runge-Kutta order 4 method [1].

Brad Hubartt

2

A = ekx

dA

dx
= B

By integrating the second derivative of A for a fixed energy I obtained values for B. If B

at a particular energy and being integrated to x → ∞ is equal to kA then that energy

value corresponds to a bound state. This is valid since the wave function (A) should

asymptotically go to zero as x → ∞, which means its derivative should do the same.

 A couple methods exist for determining if a bound state was in fact calculated.

Pictorially is probably the most interesting way since one literally ʻseesʼ where the bound

states are. This method is done by plotting RK4 determined B values in B vs A

coordinates. Additionally two lines, B=kA and B=-kA, are plotted. For all energies save

those corresponding to bound states will diverge wildly from the two oblique lines. When

a bound state is found, the calculated B values will curve around until they hug the

B=-kA line. If the coder were particularly interested in being flashy he could construct a

video from the plots for each energy.

 The other method, that I am aware of, involves no images. It is much more

automated and simply reports the energies at which bound states occur in a data file.

This technique works by doing the exact same RK4 process as the pictorial method at a

particular energy, but it merely takes the final B value - kA and records that value. If on

the next energy level the sign (+-) changes for the new B-kA value then a bound state

exists somewhere between those two energies. Then the program continues running

until either another sign change occurs and it reports that range too, or it reaches the

Brad Hubartt

3

dB

dx
= k2A

k =
√

(E − V (x))
2m

!

maximum energy being searched over. For my potential I scanned energies from value

at the minimum of the curve up to 0eV. After these energy ranges have been recorded,

the same program is re-run with a more fine resolution (1000 steps) over the range and

an approximate value for the bound state is picked out. In reality both methods could be

employed simultaneously assuming technical difficulties in producing the plots are

overcome.

 In my RK4 integrator a few constants had to be defined. For the steps in the x

direction I used 0.01. This small value should ensure convergence of the calculation.

Results

 Finding the bound states for my potential is not particularly interesting unless

they are found for a variety of values of c. For this project I chose values of c = 1, 20,

50, and 100. It was an arbitrary selection of values on my part that I thought would give

a decent idea of how the bound state(s) change. Besides the original potential I also

found bound states at the same c values for:

and:

Brad Hubartt

4

V = c(
1

x13
− 1

x7
)

V = c(
1

x11
− 1

x5
)

The calculated bound states are in the following table.

x^13 x^7 potenial x^12 x^6 potenial x^11 x^5 potenial
c=1.0 bound (eV) c=1.0 bound (eV) c=1.0 bound (eV)

ground state -0.0069826 ground state -0.007293 ground state -0.00689731

c=20.0 c=20.0 c=20.0
ground state -3.481657 ground state -3.5037875 ground state -3.540993
1st excited

state
-0.024326 1st excited

state
-0.0226575 1st excited

state
-0.020713

c=50.0 c=50.0 c=50.0
ground state -3.189116 ground state -3.2472375 ground state -3.31905
1st excited

state
-0.053587 1st excited

state
-0.046725 1st excited

state
-0.039104

c=100.0 c=100.0 c=100.0
ground state -2.778687 ground state -2.90456 ground state -3.05527
1st excited

state
-0.11967 1st excited

state
-0.09597 1st excited

state
-0.07176

Discussion

 Interestingly, the energy that the bound states occur for a particular c value does

not change much from one potential to another. This is not too surprising though as the

potential wells do not change by that much from one potential equation to the next.

Something I do not really understand is why at larger c values the two bound states get

closer in energy. As c increases the ground state increases in energy and the first

excited state decreases. For example, in the x13 x7 potential, as c goes from 20 to 50

the ground state increases in energy by 8.4%. Again, going from c=50 to c=100 there is

a change of 12.87%. My idea for why this occurs is that the potential well is getting

stretched too much to support the ground state at lower energies, that a half-wave

literally would not fit in the width of the potential. This is supported by the negative

values of the well always starting at x>1 and the minimum is always in the same

Brad Hubartt

5

location, x=1.12246. Regardless of why, the values in the table show the energies at

which regular wave functions will be located.

 So now what? The next thing to be done is to modify the program to actually

solve the Lennard-Jones potential instead of this similar potential. The only difference

between the two is instead of one coefficient c, there are two. One would be c12 while

the other would be c6, both being divided by x of the same power. Due to the popularity

of Lennard-Jones in essentially all molecular dynamics models fully understanding this

potential is rather important.

References

[1] Gilmore, Robert Elementary Quantum Mechanics in One Dimension, Johns Hopkins

University Press, 2004, particularly chapter 36

[2] W. Kob and C. Donati and S. J. Plimpton and P. H. Poole and S. C. Glotzer,

Dynamical Heterogeneities in a Supercooled Lennard-Jones Liquid, Physical Review

Letters, 1997, 10.1103/PhysRevLett.79.2827

[3] L. Verlet, Computer "Experiments" on Classical Fluids. I. Thermodynamical

Properties of Lennard-Jones Molecules, Physical Review, 1967, 10.1103/PhysRev.

159.98

[4] Amal Lotfi; Jadran Vrabec; Johann Fischer, Vapour liquid equilibria of the Lennard-

Jones fluid from the NpT plus test particle method, Molecular Physics, Volume 76, Issue

6, August 1992 , pages 1319 - 1333

Brad Hubartt

6

Appendix

Here is the code used during this project. It was written in Python. A bash script was

used to run this code repeatedly with iterated energies.

import sys
from numpy import *
#order for arguments is p,q,E
#the variables for the numerators in the potential
#p is for r6
#q is for r12
p = float(sys.argv[1])
q = float(sys.argv[2])

#big_pow and small_pow are the exponents for the lenard jones pot.
#i used variables since i want to do this for various versions
#of the potential, not just the standard exponents
big_pow = 11.0
small_pow = 5.0
#the value for emin here was for a fine tune scan, normally it would be the equation
#commented out right after it
emin =0.0841846535 #abs(p/pow(1.122462048,big_pow)-q/
#pow(1.122462048,small_pow))
#again, the long decimal was specific to a fine tune scan
E = -emin + float(sys.argv[3])*0.0280615512/1000.0
c=0.26265625
#output file
data = open('data_fine.txt','a')
#rmax is the largest r value to be used
#dr is the increment stepsize
rmax = 100.0
dr = 1.0/100.0

#I can't start at zero due to division by zero, so 0.5 gave
#a reasonible energy, about 4000eV
rmin = 0.85
N = (rmax-rmin)/dr

#data is an array of all the points reached
#during the integration so i can make a plot
#of what each curve looks like
data_t = zeros(int(N+1), dtype=float)
data_w = zeros(int(N+1), dtype=float)
data_x = zeros(int(N+1), dtype=float)
#here is my runge-kutta process since the built in one

Brad Hubartt

7

#doesn't save the intermediate steps, which are needed
#to make a pretty picture
#the algorithm is from 'Numerical Analysis' by Richard Burden, page 278
#all of the variables are defined there
alpha = exp(sqrt(abs(E-p/pow(rmin,12)+q/pow(rmin,6))*c)*rmin)
h = (rmax-rmin)/N
#i use t here instead of the more natural r
#to follow the notation in the book being used
#making me less likely to get confused and screw it up
t = rmin
w = alpha
data_t[0]= t
data_w[0] = w
data_x[0]=rmin

for i in range(1,int(N)+1):
 data_x[i]=rmin+dr*i
 tempt = t
 tempw = w
 k1 = h*(-c*(E-p/pow(tempt,big_pow)+q/pow(tempt,small_pow)))*tempw

 tempt = t + h/2.0
 tempw = w + k1/2.0
 k2 = h*(-c*(E-p/pow(tempt,big_pow)+q/pow(tempt,small_pow)))*tempw

 tempt = t + h/2.0
 tempw = w + k2/2.0
 k3 = h*(-c*(E-p/pow(tempt,big_pow)+q/pow(tempt,small_pow)))*tempw

 tempt = t + h
 tempw = w + k3
 k4 = h*(-c*(E-p/pow(tempt,big_pow)+q/pow(tempt,small_pow)))*tempw

 w = w +(k1 + 2.0*k2 + 2.0*k3 + k4)/6
 t = rmin + i*h

 data_t[i] = t
 data_w[i] = w
 # print >> data, t, w
ka = sqrt(c*abs((E-p/pow(rmax,big_pow)+q/pow(rmax,small_pow))))*exp(sqrt(c*abs((E-
p/pow(rmax,big_pow)+q/pow(rmax,small_pow))))*rmax)
print >> data, E ,w,ka,w-ka
data.close()

Brad Hubartt

8

