
Introduction


 The Lennard-Jones potential is used relentlessly in chemistry and physics[2][3][4]

(Just the top few results from Google Scholar). It is often employed to model the van der 

Waals effect in molecular collision simulations. The form of the Lennard-Jones potential 

is very similar to:

which is the potential studied here. Normally this potential repels two particles away 

from one another when they get too close. Since this is a 1-D quantum mechanics 

project, I set V up as my potential barrier. In this case x refers to how far into the barrier 

an electron has flown. Not exactly the same use as molecular collisions, but still 

interesting. Bound states should still occur at the same energies. A bound state has a 

particularly favorable resonance within the potential, the lowest bound state is often 

referred to as the ground state in other projects and is the energy at which a half-length 

wave fits in the potential and asymptotically approaches zero outside of the well.

Methods


 How does someone go about finding the bound states of a potential? That 

depends on the type of potential being used. In my case it was a potential without 

asymptotic or periodic boundary conditions. From the equation for my potential it is 

obvious that it becomes really big really fast as x approaches 0. To avoid any 

cataclysmic mathematical problems I decided to have my smallest value of x = 0.85 . By  

setting the minimum x there I ensure a ʻreasonablyʼ large potential barrier on the left 

side of the system. Additionally, I set the maximum value as x = 100.0 . Due to the 
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shape of the potential 100.0 seems to be close enough to infinity, a plot of my potential 

is below.

As can be seen, the potential is already ʻessentiallyʼ zero by the time the electron would 

get to x = 2, so by x = 100 it should be a fairly reasonable approximation to infinity. Due 

to the nature of my potential, and having a nice function, I used the sine transform 

method to find the bound states.


 This method works by coupling the wave function with its second derivative and 

integrating via the Runge-Kutta order 4 method [1]. 
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By integrating the second derivative of A for a fixed energy I obtained values for B. If B 

at a particular energy and being integrated to x → ∞ is equal to kA then that energy 

value corresponds to a bound state. This is valid since the wave function (A) should 

asymptotically go to zero as x → ∞, which means its derivative should do the same. 


 A couple methods exist for determining if a bound state was in fact calculated. 

Pictorially is probably the most interesting way since one literally ʻseesʼ where the bound 

states are. This method is done by plotting RK4 determined B values in B vs A 

coordinates. Additionally two lines, B=kA and B=-kA, are plotted. For all energies save 

those corresponding to bound states will diverge wildly from the two oblique lines. When 

a bound state is found, the calculated B values will curve around until they hug the 

B=-kA line. If the coder were particularly interested in being flashy he could construct a 

video from the plots for each energy. 


 The other method, that I am aware of, involves no images. It is much more 

automated and simply reports the energies at which bound states occur in a data file. 

This technique works by doing the exact same RK4 process as the pictorial method at a 

particular energy, but it merely takes the final B value - kA and records that value. If on 

the next energy level the sign (+-) changes for the new B-kA value then a bound state 

exists somewhere between those two energies. Then the program continues running 

until either another sign change occurs and it reports that range too, or it reaches the 

Brad Hubartt

3

dB

dx
= k2A

k =
√

(E − V (x))
2m

!



maximum energy being searched over. For my potential I scanned energies from value 

at the minimum of the curve up to 0eV. After these energy ranges have been recorded, 

the same program is re-run with a more fine resolution (1000 steps) over the range and 

an approximate value for the bound state is picked out. In reality both methods could be 

employed simultaneously assuming technical difficulties in producing the plots are 

overcome.


 In my RK4 integrator a few constants had to be defined. For the steps in the x 

direction I used 0.01. This small value should ensure convergence of the calculation. 

Results


 Finding the bound states for my potential is not particularly interesting unless 

they are found for a variety of values of c. For this project I chose values of c = 1, 20, 

50, and 100. It was an arbitrary selection of values on my part that I thought would give 

a decent idea of how the bound state(s) change. Besides the original potential I also 

found bound states at the same c values for:

and:
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The calculated bound states are in the following table.

x^13 x^7 potenial x^12 x^6 potenial x^11 x^5 potenial
c=1.0 bound (eV) c=1.0 bound (eV) c=1.0 bound (eV)

ground state -0.0069826 ground state -0.007293 ground state -0.00689731

c=20.0 c=20.0 c=20.0
ground state -3.481657 ground state -3.5037875 ground state -3.540993
1st excited 

state
-0.024326 1st excited 

state
-0.0226575 1st excited 

state
-0.020713

c=50.0 c=50.0 c=50.0
ground state -3.189116 ground state -3.2472375 ground state -3.31905
1st excited 

state
-0.053587 1st excited 

state
-0.046725 1st excited 

state
-0.039104

c=100.0 c=100.0 c=100.0
ground state -2.778687 ground state -2.90456 ground state -3.05527
1st excited 

state
-0.11967 1st excited 

state
-0.09597 1st excited 

state
-0.07176

Discussion


 Interestingly, the energy that the bound states occur for a particular c value does 

not change much from one potential to another. This is not too surprising though as the 

potential wells do not change by that much from one potential equation to the next. 

Something I do not really understand is why at larger c values the two bound states get 

closer in energy. As c increases the ground state increases in energy and the first 

excited state decreases. For example, in the x13 x7 potential, as c goes from 20 to 50 

the ground state increases in energy by 8.4%. Again, going from c=50 to c=100 there is 

a change of 12.87%. My idea for why this occurs is that the potential well is getting 

stretched too much to support the ground state at lower energies, that a half-wave 

literally would not fit in the width of the potential. This is supported by the negative 

values of the well always starting at x>1 and the minimum is always in the same 
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location, x=1.12246. Regardless of why, the values in the table show the energies at 

which regular wave functions will be located.


 So now what? The next thing to be done is to modify the program to actually 

solve the Lennard-Jones potential instead of this similar potential. The only difference 

between the two is instead of one coefficient c, there are two. One would be c12 while 

the other would be c6, both being divided by x of the same power. Due to the popularity 

of Lennard-Jones in essentially all molecular dynamics models fully understanding this 

potential is rather important.
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Appendix

Here is the code used during this project. It was written in Python. A bash script was 

used to run this code repeatedly with iterated energies. 

import sys
from numpy import *
#order for arguments is p,q,E
#the variables for the numerators in the potential
#p is for r6
#q is for r12
p = float(sys.argv[1])
q = float(sys.argv[2])

#big_pow and small_pow are the exponents for the lenard jones pot.
#i used variables since i want to do this for various versions
#of the potential, not just the standard exponents
big_pow = 11.0
small_pow = 5.0
#the value for emin here was for a fine tune scan, normally it would be the equation 
#commented out right after it
emin =0.0841846535 #abs(p/pow(1.122462048,big_pow)-q/
#pow(1.122462048,small_pow))
#again, the long decimal was specific to a fine tune scan
E = -emin + float(sys.argv[3])*0.0280615512/1000.0
c=0.26265625
#output file
data = open('data_fine.txt','a')
#rmax is the largest r value to be used
#dr is the increment stepsize
rmax = 100.0
dr = 1.0/100.0

#I can't start at zero due to division by zero, so 0.5 gave
#a reasonible energy, about 4000eV
rmin = 0.85
N = (rmax-rmin)/dr

#data is an array of all the points reached 
#during the integration so i can make a plot
#of what each curve looks like
data_t = zeros(int(N+1), dtype=float)
data_w = zeros(int(N+1), dtype=float)
data_x = zeros(int(N+1), dtype=float)
#here is my runge-kutta process since the built in one
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#doesn't save the intermediate steps, which are needed
#to make a pretty picture
#the algorithm is from 'Numerical Analysis' by Richard Burden, page 278
#all of the variables are defined there
alpha = exp(sqrt(abs(E-p/pow(rmin,12)+q/pow(rmin,6))*c)*rmin)
h = (rmax-rmin)/N
#i use t here instead of the more natural r
#to follow the notation in the book being used
#making me less likely to get confused and screw it up
t = rmin
w = alpha
data_t[0]= t
data_w[0] = w
data_x[0]=rmin

for i in range(1,int(N)+1):
    data_x[i]=rmin+dr*i
    tempt = t
    tempw = w
    k1 = h*(-c*(E-p/pow(tempt,big_pow)+q/pow(tempt,small_pow)))*tempw
    
    tempt = t + h/2.0 
    tempw = w + k1/2.0
    k2 = h*(-c*(E-p/pow(tempt,big_pow)+q/pow(tempt,small_pow)))*tempw

    tempt = t + h/2.0
    tempw = w + k2/2.0
    k3 = h*(-c*(E-p/pow(tempt,big_pow)+q/pow(tempt,small_pow)))*tempw

    tempt = t + h
    tempw = w + k3
    k4 = h*(-c*(E-p/pow(tempt,big_pow)+q/pow(tempt,small_pow)))*tempw

    w = w +(k1 + 2.0*k2 + 2.0*k3 + k4)/6
    t = rmin + i*h
    
    data_t[i] = t
    data_w[i] = w
   # print >> data, t, w
ka = sqrt(c*abs((E-p/pow(rmax,big_pow)+q/pow(rmax,small_pow))))*exp(sqrt(c*abs((E-
p/pow(rmax,big_pow)+q/pow(rmax,small_pow))))*rmax)
print >> data, E ,w,ka,w-ka
data.close()
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