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1. Introduction 

Quantum mechanics, as we have known for the past 88 years, rests upon the Hilbert vector 

space. In a recent paper published in January 8
th

 2013, Lay Nam Chang, Zachary Lewis, Djordje 

Minic, and Tatsu Takeuchi from Virginia Tech university proposed the idea of constructing an 

alternative ‘Non – Hilbertian’ “discrete quantum mechanics on the vector space   
  over the 

finite Galois field   ( )    ” (Source 1). This is an attempt to improve our understanding on 

mathematical foundations of quantum mechanics. Just as Non – Euclidean geometry has helped 

us understood the curvature structure of space – time in general relativity, the replacement of 

Hilbert space with the finite Galois field as the space on which quantum state vectors are defined 

could potentially lead to invaluable insights into quantum mechanics at its most fundamental 

level. However, in order for the new algebraic system defined on   
  to be qualified as a truly 

quantum mechanical system, it needs to be shown that “no theory of local hidden variables can 

reproduce all the predictions of the system” (Sources 1 and 3). A common way to do this is to 

show that our algebraic construction violates the Clause – Horne – Shimony – Holt (CHSH) 

inequality which set an upper bound on the correlation between two distant events. If the local 

hidden variable, which connect two distant events, really exist then this correlation upper bound 

is found to be 2 (Sources 1 and 3). The mathematical structure of quantum mechanics on Hilbert 

space forces this upper bound to be  √  > 2 which means that quantum mechanics on Hilbert 

space violate the CHSH inequality. So, violation of the CHSH inequality is a confirmation test to 

show that whether a system is quantum mechanical or not (Source 1). However, our new system 

on finite Galois field turns out not to violate the CHSH inequality, and the correlation upper 

bound for this system turns out to be the classical hidden variable value 2. Nevertheless, the 

authors were able to show some results derived from the mathematical structure of the new 

system on    that contradicts with the predictions of classical local hidden variables theory. Thus 

they conclude that “the new system cannot be fully described by any local hidden variable 

theory” (Source 1). Therefore, the new system is qualified as a quantum mechanical system.   
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2. Algebraic construction of the new quantum theory 

The heart of this new quantum construction is the idea of replacing the Hilbert space with a finite 

field      
 as the ‘space’ in which the N - dimensional state vectors   ⟩ of the quantum 

system are defined (1). Here according to Galois theorem,    is the unique finite field of order q 

known as “Galois field GF(q) where q =    with p a prime number and n  ” (Sources 1 and 2). 

When n=1, GF(q) = GF(p) =      (  ) (1 and 2). The outcome of a measurement made on 

the state   ⟩ is defined to be dual vector ⟨   in the dual space   
 . “The probability of obtaining a 

result ⟨   when a measurement of a certain observable O is made on the state   ⟩ is defined as”: 

 (⟨   ⟩)  
 ⟨   ⟩  

∑  ⟨   ⟩   
 (1 and 2) 

Where the sum in the denominator runs over the set of all possible results of the observable O. 

Here, the number  ⟨   ⟩  , where ⟨   ⟩    , is defined using the following function: 

| |  {
        

         
 (Eqn 1) (1 and 2) 

The underline bar is used to denote elements in   . The ‘state space’    is given the finite 

projective geometry   (     )  (  
     ) (      ) where 

                  (     )      
   “The projective geometry PG(N – 1, F) of an N – vector 

space V over a field F is the geometry whose points, lines, planes,… are the vector subspaces of 

V of dimensions 1, 2, 3 …” (Source 4). “The group of all possible basis transformations of the 

space    is the projective linear group    (   )    (   )  (   ) where   (   ) is the 

general linear group of   
  and  (   ) is the center of   (   )” (Source 1). “The general linear 

group   (   ) is the group of all non – singular linear transformations of   
 . The 

representation of the group   (   ) is the group of invertible N N matrices with entries in   ” 

(Source 1). 

The absolute value function defined above for the elements of    is the only one which satisfies 

the product preserving condition |   |  | || | required in order for “the probabilities of product 

observables on product states to be factorizable into product of individual observable on 

individual state” (Source 2) 

 (⟨     ⟩)  
 (⟨   ⟨  )(  ⟩   ⟩)  

∑  (⟨   ⟨  )(  ⟩   ⟩)    
 

 ⟨   ⟩⟨   ⟩  

∑  ⟨   ⟩⟨   ⟩    
 

 ⟨   ⟩   ⟨   ⟩  

∑  ⟨   ⟩   ⟨   ⟩    
 

 ⟨   ⟩  

∑  ⟨   ⟩   

 ⟨   ⟩  

∑  ⟨   ⟩   
  (⟨   ⟩) (⟨   ⟩) (Sources 1 and 2) 

The quantum system built on the above specified algebraic structure is called Galois field 

quantum mechanics, abbreviated as GQM. If our GQM model is built over the vector space   
 , 

then we denote it as GQM(N, q). “Spin – like systems with two possible outcomes    for the 
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spin operator can be constructed on the vector space      
  as GQM(2, q). Two – particle spin 

– like systems can be constructed as GQM(4, q) on the space         
    

    
 ”. For each 

system of GQM(N, q), we have      non – zero quantum states (Source 1). In this paper I will 

demonstrate in detail the case q = 2 because the mechanisms of the cases of higher values of q is 

exactly the same as that of the case q = 2. 

3. Hidden variable theory and CHSH inequality 

Einstein, Podolsky, and Rosen proposed a paradox, known collectively as the EPR paradox, 

which led them to conclude that quantum theory was incomplete unless a local hidden variable 

existed. Their idea became known as the local hidden variable theory (Source 3). The local 

hidden variable theory states that distant events have no instantaneous (or faster than light) 

effects on local events. “However, in 1964, John Stewart Bell showed that in a Gedanken 

experiment of Bohm, no physical theory of local hidden variables can ever reproduce all of the 

predictions of quantum mechanics" (Source 3). In 1969, John Clauser, Michael Horne, Abner 

Shimony, and Richard Holt proposed an experimental test to confirm Bell’s theorem. This 

experiment led directly to the Clauser – Horne – Shimony – Holt inequality (CHSH inequality) 

which set an upper bound to how much correlated two distant events could be if local hidden 

variable theory were true (Source 3). This upper bound turned out to be 2. Violation of the 

CHSH inequality, i.e. a correlation upper bound greater than 2, is a necessary step to show that a 

system does not behave according to local hidden variable theory (Source 1). The mathematical 

structure of the regular quantum theory on Hilbert space requires this correlation upper bound to 

be  √  > 2 (Source 1). Therefore, quantum mechanics on Hilbert space violates the CHSH 

inequality. This leads to the conclusion that quantum mechanics cannot by described by the local 

hidden variable theory. So, in order for an algebraic system to be qualified as a quantum system, 

it needs to be shown, either through violation of CHSH inequality or some other way, that no 

local hidden variable theory can describe the system (Source 1). This is the argument used in this 

paper to show that the quantum system defined over the finite Galois field    is indeed a truly 

quantum system (Source 1). 

In the experiment proposed by Clause, Horne, Shimony, and Holt, a source simultaneously ejects 

two identical particles in opposite directions. One particle enters the apparatus A and the other 

enters the apparatus B. A and B are two – channel systems where the two channels are +1 and -1. 

So, a particle entering an apparatus will have to choose whether to go through channel +1 or -1. 

Let a and b be adjustable apparatus parameters for systems A and B, so A(a) and B(b) will have 

values    depending on which channel the particle decides to go through once it has entered an 

apparatus (Source 3). There is a coincidence monitor which increments by 1 every time there is a 

pair of particle that have A(a) = B(b). Suppose, the two particles share some common 

information, then this common information is the set of locally hidden variables carried within 

each particle (Source 3). The set of locally hidden variables are denoted collectively as  . So, the 

result of channel selection by a particle within an apparatus, either A or B, is described by 
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 (   ) and  (   ). Once again,  (   ) and  (   ) take on values of    depending on which 

channel of the apparatus the particle selects (Source 3). “The probability of the result of channel 

selection by each particle does not depend on the apparatus parameter a or b because each 

particle is ejected from a source which is physically independent from the apparatus. Thus, the 

probability of channel selection depends only  . Therefore, the probability distribution of 

channel selection  ( ) is defined over the domain of the common information  ” (Source 3). 

“The correlation function is defined as  (   )  ∫  (   ) (   ) ( )  
 

 where   is the 

domain of    (Source 3). Using triangle inequality, we have: 

  (   )   (   )  ∫   (   ) (   )   (   ) (   )  ( )  
 

 ∫   (   ) (   ) 
 

[  

 (   ) (   )] ( )   ( ) (Source 3) 

Because A and B takes on values      (   ) (   )     

So:   (   )   (   )  ∫ [   (   ) (   )] ( )   
 

   ∫  (   ) (   ) ( )  
 

 (*) 

(Source 3) 

The correlation function P takes on values between 0 and 1 with 1indicating 100% correlation 

and 0 indicating no correlation. Suppose that  (    )                      

 (    ) (        )  We can now divide the   domain into two parts           such that 

       (    )    (   ) , then ∫  ( )  
  

 
 

 
  (Source 3). Also, we have: 

∫  (   ) (   ) ( )  
 

 ∫  (    ) (   ) ( )  
 

  ∫  (    ) (   ) ( )  
  

 

 (    )   ∫   (    ) (   )  ( )  
  

 (Source 3) 

Because:   (    ) (   )     ∫   (    ) (   )  ( )  
  

  ∫  ( )  
  

  
 

 
    

  ∫  (   ) (   ) ( )  
 

  (    )     (    )   (    )   (**) (Source 3) 

From (*) and 

(**)   (   )   (   )     (    )   (    )  

{
 (   )   (   )     (    )   (    )

 (   )   (   )      (    )   (    )
 (Source 3) 

But since:  (    )   (    )      (    )   (    )       (    )   (    )  

 2  (    )   (    ) 

  2  (    )   (    )   (   )   (   )     (    )   (    ) 

   (   )   (   )   (    )   (    )    (Source 3) 
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This is the most popular form of the CHSH inequality. From the above derivation, we can see 

where the upper bound of 2 came from if a local hidden variable existed. The most common 

schematic for the CHSH experiment is shown below: 

FIGURE 1. Basic schematic of CHSH experiment. A pair of particles is ejected simultaneously 

from a common source S into opposite directions. Each particle will enter a two – channel    

system A or B with an adjustable apparatus parameter a or b. A detector is placed in each 

channel to detector the particle, detector   is used to detect the particle if it enters channel +1 of 

the apparatus and detector   is used in channel -1 of the apparatus. The coincidence monitor 

CM will increment by 1 if the two particles choose the same type of channel (i.e. either both +1 

or both -1) in each apparatus (Source 5). 

For the quantum system defined on the vector space   
  presented in this paper, the CHSB bound 

is not the common value  √  for regular quantum system on Hilbert space but turns out to be 2 

which is classical hidden variable value (Source 1). However, the authors argued that the 

derivation of the CHSH bound value of  √  for quantum system in Hilbert space relies heavily 

on the inner product operation which the vector space   
  does not have because of the cyclicity 

of the Galois field (Source 1). Despite the fact that the quantum system on Galois field does not 

violate the CHSH inequality, the authors were able to derive some results that contradict the 

predictions of classical hidden variable theory. Therefore, the newly defined quantum system 

cannot be described by any theory of hidden variables, and thus is a truly quantum system.  

 

 

 

 

 

B 
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4. Quantum mechanics on    

The simplest quantum mechanical system on    is the 2 – dimensional system on   , denoted as 

GQM(2,2). There are only two elements in    {   } with the multiplication and addition 

tables: 

+     

      

        

(Source 1) 

      

      

        

(Source 1) 

There are only 2
2
 – 1 = 3 possible non – zero quantum states in this system: 

  ⟩  [
 

 
]    ⟩  [

 

 
]    ⟩  [

 

 
] (Source 1) 

Any state of among these 3 states can be written as a combination of the other 2: 

  ⟩    ⟩    ⟩    ⟩    ⟩    ⟩    ⟩    ⟩    ⟩ (Source 1) 

Therefore, we can choose any 2 vectors to be the basis for the vector space   
  of the    quantum 

mechanics (Source 1). The group of all possible basis transformations for this vector space is 

      (   ) (Source 1). The dual vectors corresponding to the above 3 non – zero state 

vectors are defined as: 

⟨ ̅  [   ]  ⟨ ̅| [   ]  ⟨ ̅|  [   ] (Source 1) 

We also have the definition: 

⟨   ⟩  {
         

         
 (Eqn 2) (Source 1) 
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So from (Eqn 1) and (Eqn 2)  ⟨   ⟩        (Eqn 3) (source 1) 

Just like for the vector space   
 , we can choose any 2 of the above 3 non – zero dual vectors to 

form the basis for the dual vector space (  
 ) . We have 3 dual vectors, and we need to select 2 

of them to form the basis for the dual space, so have (
 
 
)    possible selections for the basis. 

An observable for this quantum system is defined to be one the 3 possible selections for the pair 

of dual vectors above. So, we have: 

                ⟨   ⟨    where ⟨       ⟨   are two of the 3 non – zero dual vectors 

⟨   ⟨   ⟨    defined above (Source 1.) 

Also, ⟨   represents the outcome +1 and ⟨   represents the outcome of -1 when observable     is 

measured and          (Source 1). 

Since we have 3 possible selections of the pair of dual vectors, we have 3 observables 

               . Let us denote                       (Source 1).  

X, Y, and Z transform into each other under the permutation group 

    (  ) (  ) (  ) (   ) (   ) (  )  where the cycle (  ) represents the identity 

permutation, i.e. no permutation, which is trivial so we will not consider it here (Source 1). In 

this situation, (   ) means a gets changed into b, b gets changed into c, and c gets changed into 

a; so the subscript indices of an observable, say    , will be changed into bc under the cycle 

(   ). So, (   )       . Below is the list of all non – trivial transformations of the 

observables X, Y, and Z (Source 1): 

 X Y Z 

(  ) -Y -X -Z 

(  ) -X -Z -Y 

(  ) -Z -Y -X 

(   ) +Y +Z +X 

(   ) +Z +X +Y 
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“The six cycles in    can be mapped into the six rotations in the dihedral group    which rotate 

the triangle abc in the figure below into itself.” (Source 1) 

 

FIGURE 2. The six rotation axes that map the triangle      onto itself (Source 1) 

As mentioned previously, in this    quantum mechanics, there are only two eigenvalues    for 

all the observables in this system. So, let us take the observable     for an example, it is defined 

as     {⟨   ⟨  }. When the observable     operates on a certain state   ⟩, the outcome value 

could only be +1 or -1, with ⟨   representing ⟨   and ⟨   representing ⟨  . So, the probability of 

getting an outcome of +1 when     operates on   ⟩ is: 

 (    ⟨   ⟩)  
 ⟨   ⟩  

 ⟨   ⟩    ⟨   ⟩  
 

 ⟨   ⟩  

 ⟨   ⟩   |⟨ | ⟩|
  (Eqn 4) 

Where  ⟨   ⟩  and |⟨ | ⟩| are calculated according to (Eqn 3): 

 ⟨   ⟩            |⟨ | ⟩|        (Eqn 5) 

And the outcome expectation value of the observable     when operating on   ⟩ is: 

〈   〉  (  )   (    ⟨   ⟩)  (  )   (    ⟨   ⟩) (Eqn 6) 

Since we only have 3 states   ⟩,   ⟩,   ⟩, the outcome probabilities and when the observable     

operates on them are calculated based on (Eqn 4) and (Eqn 5) as follows: 

 (    ⟨   ⟩)  
 ⟨   ⟩  

 ⟨   ⟩   |⟨ | ⟩|
    (Source 1) 

 (    ⟨   ⟩)  
|⟨ | ⟩|

 

 ⟨   ⟩   |⟨ | ⟩|
    (Source 1) 

 (    ⟨   ⟩)  
 ⟨   ⟩  

 ⟨   ⟩   |⟨ | ⟩|
    (Source 1) 
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 (    ⟨   ⟩)  
|⟨ | ⟩|

 

 ⟨   ⟩   |⟨ | ⟩|
    (Source 1) 

 (    ⟨   ⟩)  
 ⟨   ⟩  

 ⟨   ⟩   |⟨ | ⟩|
  

 

 
 (Source 1) 

 (    ⟨   ⟩)  
|⟨ | ⟩|

 

 ⟨   ⟩   |⟨ | ⟩|
  

 

 
  (Source 1) 

The expectation values of     when operating on   ⟩,   ⟩,   ⟩ are calculated based on (Eqn 6) as 

follow: 

〈   〉  (  )  ( )  (  )  ( )     (Source 1) 

〈   〉  (  )  ( )  (  )  ( )     (Source 1) 

〈   〉  (  )  (
 

 
)  (  )  (

 

 
)    (Source 1) 

Like wise we can compute the outcome probabilities and expectation values for     and    , and 

the list of all the probabilities and expectation values are shown below: 

Observable State P(+) P(-) Expectation 

Value 

      ⟩ 0 1 -1 

  ⟩ 1 0 +1 

  ⟩  

 
 

 

 
 

0 

      ⟩  

 
 

 

 
 

0 

  ⟩ 0 1 -1 

  ⟩ 1 0 +1 

      ⟩ 1 0 +1 

  ⟩  

 
 

 

 
 

0 

  ⟩ 0 1 -1 

(Source 1) 

5. Two – particle system in    quantum mechanics 

Each particle in    quantum mechanics exist in the space   
 , so the space for 2 – particle system 

in    quantum mechanics is   
 . This Galois quantum mechanics for the 2 – particle system is 

denoted as GQM(4, 2). There are 2
4
 – 1 = 15 non – zero quantum states which divide themselves 

into 9 pure states and 6 entangled states. The nine pure states are defined as follow: 
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   ⟩    ⟩    ⟩  

[
 
 
 
 

 

 

 ]
 
 
 

 (Source 1) 

   ⟩    ⟩    ⟩  

[
 
 
 
 

 

 

 ]
 
 
 

 (Source 1) 

   ⟩    ⟩    ⟩  

[
 
 
 
 

 

 

 ]
 
 
 

 (Source 1) 

   ⟩    ⟩    ⟩  

[
 
 
 
 

 

 

 ]
 
 
 

 (Source 1) 

   ⟩    ⟩    ⟩  

[
 
 
 
 

 

 

 ]
 
 
 

 (Source 1) 

   ⟩    ⟩    ⟩  

[
 
 
 
 

 

 

 ]
 
 
 

 (Source 1) 

   ⟩    ⟩    ⟩  

[
 
 
 
 

 

 

 ]
 
 
 

 (Source 1) 

   ⟩    ⟩    ⟩  

[
 
 
 
 

 

 

 ]
 
 
 

 (Source 1) 

   ⟩    ⟩    ⟩  

[
 
 
 
 

 

 

 ]
 
 
 

 (Source 1) 
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The six entangled states are defined as follow: 

  ⟩     ⟩     ⟩     ⟩  

[
 
 
 
 

 

 

 ]
 
 
 

 (Source 1) 

This state transforms into itself under all permutations of    

The other 5 entangled states are: 

 (  )⟩     ⟩     ⟩     ⟩  

[
 
 
 
 

 

 

 ]
 
 
 

 (Source 1) 

 (  )⟩     ⟩     ⟩     ⟩  

[
 
 
 
 

 

 

 ]
 
 
 

 (Source 1) 

 (  )⟩     ⟩     ⟩     ⟩  

[
 
 
 
 

 

 

 ]
 
 
 

 (Source 1) 

 (   )⟩     ⟩     ⟩     ⟩  

[
 
 
 
 

 

 

 ]
 
 
 

 (Source 1) 

 (   )⟩     ⟩     ⟩     ⟩  

[
 
 
 
 

 

 

 ]
 
 
 

 (Source 1) 

Similar to the case of 1 – particle system, we can define dual vectors in the dual space (  
 )  for 

the 2 – particle system. However, we can only define the dual vectors corresponding to the 9 

pure state vectors: 

⟨   ⟨   [    ] (Source 1) 

⟨ | ⟨ |  [    ] (Source 1) 

⟨   ⟨   [    ] (Source 1) 
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⟨   ⟨   [    ] (Source 1) 

⟨ | ⟨ |  [    ] (Source 1) 

⟨   ⟨   [    ] (Source 1) 

⟨   ⟨   [    ] (Source 1) 

⟨ | ⟨ |  [    ] (Source 1) 

⟨   ⟨   [    ] (Source 1) 

Also similar to the case of 1 – particle system, we can define the observables for the 2 – particle 

system as the selections of basis for the dual space (  
 ) : 

       {⟨ | ⟨ | ⟨   ⟨   ⟨ | ⟨ | ⟨   ⟨  } where                  (Source 1) 

So there are a total of 9 observables. Suppose we have a state 

  ⟩     ⟩     ⟩              ⟩  (      ⟩)  (      ⟩) 

So an operator of a 2 – particle system state consists of one operator on the state of the 1 first 

particle, and another operator on the state of the second particle. Let the set of operators on the 

first particle be            and the set of operators on the second operators be            where 

                                   .  

Suppose we have a 2 – particle operator        {⟨ | ⟨ | ⟨   ⟨   ⟨ | ⟨ | ⟨   ⟨  } 

operating on a state   ⟩     ⟩     ⟩. The vector ⟨   represent the +1 outcome and ⟨   

represents the -1 outcome when     is measured, but ⟨   represents +1 when     is measured 

and ⟨   represents -1 when     is measured. So, ⟨   ⟨       ⟨   ⟨   for the first particle and 

⟨   ⟨       ⟨   ⟨   for the second particle         ⟨   ⟨   ⟨   ⟨   ⟨   

⟨   ⟨   ⟨   . Probabilities for the outcomes are calculated as follow: 

 (       ⟨    ⟩)  
 ⟨       ⟩ 

 

∑  ⟨       ⟩    
 

 (⟨   ⟨  )(   ⟩    ⟩) 
 

∑  (⟨   ⟨  )(   ⟩    ⟩)    
 

 ⟨    ⟩ 
  ⟨    ⟩ 

 

∑ ∑  ⟨    ⟩   ⟨    ⟩    
 

 ⟨    ⟩ 
 

 ⟨    ⟩    ⟨    ⟩  

 ⟨    ⟩ 
 

 ⟨    ⟩    ⟨    ⟩  
  (    ⟨    ⟩) (    ⟨    ⟩) (Eqn 7) 

Similarly, 

 (       ⟨    ⟩)    (    ⟨    ⟩) (    ⟨    ⟩)   

 (       ⟨    ⟩)    (    ⟨    ⟩) (    ⟨    ⟩)   

 (       ⟨    ⟩)    (    ⟨    ⟩) (    ⟨    ⟩)   
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 (       ⟨    ⟩)    (    ⟨    ⟩) (    ⟨    ⟩)   

The outcome expectation when        operates on   ⟩     ⟩     ⟩ is calculated as: 

〈      〉  ∑    (       ⟨    ⟩)   ∑    (    ⟨    ⟩) (    ⟨    ⟩)   

(∑   (    ⟨    ⟩)) (∑   (    ⟨    ⟩))  〈   〉  
〈   〉  

 (Eqn 8) 

Based on the above rules specified in (Eqn 7) and (Eqn 8), we can calculate all the outcome 

probabilities and expectation values for all the 9 observables of the 2 – particle system. The 

results are tabulated below: 

Observable State  P(+ +)  P(+ -) P(- +) P(- -) Expectation 

Value 

       ⟩ 0  

 
 

 

 
 

0 -1 

 (  )⟩  

 
 

 

 
 

 

 
 

0 
 

 

 
 

 (  )⟩  

 
 

0 0  

 
 

+1 

 (  )⟩ 0  

 
 

 

 
 

 

 
  

 

 
 

 (   )⟩  

 
 

0  

 
 

 

 
  

 

 
 

 (   )⟩  

 
 

 

 
 

0  

 
  

 

 
 

(Source 1) 

Observable State  P(+ +)  P(+ -) P(- +) P(- -) Expectation 

Value 

       ⟩  

 
 

 

 
 

0  

 
  

 

 
 

 (  )⟩  

 
 

     

 
 

   

 (  )⟩    

 
 

 

 
 

 

 
  

 

 
 

 (  )⟩  

 
 

 

 
 

 

 
 

  
 

 

 
 

 (   )⟩    

 
 

 

 
 

     

 (   )⟩  

 
 

   

 
 

 

 
  

 

 
 

(Source 1) 
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Observable State  P(+ +)  P(+ -) P(- +) P(- -) Expectation 

Value 

       ⟩  

 
 

   

 
 

 

 
  

 

 
 

 (  )⟩ 0  

 
 

 

 
 

 

 
  

 

 
 

 (  )⟩  

 
 

 

 
 

 

 
 

0 
 

 

 
 

 (  )⟩  

 
 

     

 
 

+1 

 (   )⟩  

 
 

 

 
 

   

 
  

 

 
 

 (   )⟩    

 
 

 

 
 

     

(Source 1) 

Observable State  P(+ +)  P(+ -) P(- +) P(- -) Expectation 

Value 

       ⟩  

 
 

   

 
 

 

 
  

 

 
 

 (  )⟩  

 
 

     

 
 

   

 (  )⟩    

 
 

 

 
 

 

 
  

 

 
 

 (  )⟩  

 
 

 

 
 

 

 
 

  
 

 

 
 

 (   )⟩  

 
 

 

 
 

   

 
  

 

 
 

 (   )⟩    

 
 

 

 
 

     

(Source 1) 

Observable State  P(+ +)  P(+ -) P(- +) P(- -) Expectation 

Value 

       ⟩    

 
 

 

 
 

     

 (  )⟩    

 
 

 

 
 

 

 
  

 

 
 

 (  )⟩  

 
 

 

 
 

 

 
 

  
 

 

 
 

 (  )⟩  

 
 

     

 
 

   

 (   )⟩  

 
 

 

 
 

   

 
  

 

 
 

 (   )⟩  
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Observable State  P(+ +)  P(+ -) P(- +) P(- -) Expectation 

Value 

       ⟩  

 
 

 

 
 

0  

 
  

 

 
 

 (  )⟩  

 
 

 

 
 

 

 
 

  
 

 

 
 

 (  )⟩  

 
 

     

 
 

   

 (  )⟩    

 
 

 

 
 

 

 
  

 

 
 

 (   )⟩    

 
 

 

 
 

     

 (   )⟩  

 
 

   

 
 

 

 
  

 

 
 

      (Source 1) 

 

Observable State  P(+ +)  P(+ -) P(- +) P(- -) Expectation 

Value 

       ⟩  
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Observable State  P(+ +)  P(+ -) P(- +) P(- -) Expectation 

Value 
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Observable State  P(+ +)  P(+ -) P(- +) P(- -) Expectation 

Value 
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6. Contradictions with classical local hidden variable theory 

According to the above probabilities tables,  (   ⟨   ⟩) (   ⟨   ⟩)   (     ⟨    ⟩)    

The interpretation of the above equation is that for the 2 particles in the state   ⟩, if the outcome 

value when the operator    operates on the 1
st
 particle of the state   ⟩ is +1, i.e.      , then 

the outcome value when the operator    operates on the 2
nd

 particle of the state   ⟩ CANNOT be 

-1, i.e.      , which implies that    MUST BE +1 because it can only be either +1 or -1. So, 

the probability equation  (     ⟨    ⟩)    says that                           

         (I). Conversely,  (     ⟨    ⟩)    also says that            . 

Similarly from the probability  (     ⟨    ⟩)    we have             (II). And 

from  (     ⟨    ⟩)    we have             (III) 
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From (I) (II) and (III), we have the line of implication below: 

                         () 

Which means that             (IV) 

If a classical local hidden variable theory were true for the this quantum system, the line of 

implication () must be true, hence the implication (IV) must be true. 

But we also have from the first probability table above that  (     ⟨    ⟩)    which says  

                           which contradicts the implication (IV). So, we 

have just seen one prediction of our quantum system that contradicts the prediction of a local 

hidden variable theory if it were true on our system. Therefore, we can conclude that no local 

hidden variable theory can reproduce all the predictions of our quantum mechanical system on 

  
 . Therefore, the algebraic system constructed on the space   

  is qualified as a truly quantum 

mechanical system. 

Just to further solidify our reasoning, another contradiction with local hidden variable theory will 

be shown below: 

From  (     ⟨    ⟩)   , we have             

From  (     ⟨    ⟩)   , we have             

From  (     ⟨    ⟩)   , we have             

From  (     ⟨    ⟩)   , we have             

So a classical hidden variable theory would predict             () 

From  (     ⟨    ⟩)   , we have             () 

From () and (), classical hidden variable theory would predict             which 

is equivalent to  (     ⟨    ⟩)    

So, classical hidden variable theory predicts that  (     ⟨    ⟩)    

But from our probabilities tables we have  (     ⟨    ⟩)  
 

 
 

Therefore, the prediction of our quantum system in this case, once again, contradicts the 

prediction of local hidden variable theory. Hence, our construction is truly quantum.  
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7. CHSH bound 

Let    and    be observables that operates on the states of the particles         respectively, 

where         take on values 1 and 2 since there are only 2 particle in our system (Source 1). 

Then the CHSH correlation function for a certain 2 – particle state   ⟩ is defined as: 

〈           〉  〈    〉  〈    〉  〈    〉  〈    〉  where 〈    〉  is just the 

expectation value of the observable      when it operates on   ⟩ (Source 1) 

Going through the list of all the 9 observables and all the states of this 2 – particle system, the 

authors obtained the following maximum correlation bounds for the state   ⟩ 

〈           〉         〈           〉     where once again                       

              (Source 1) 

The results obtained for other observables and other states are all  
 

 
. Therefore, the upper 

bound for the correlation of our 2 – particle system is 2, which is the CHSH limit for classical 

hidden variable theory (Source 1). 

However, the fact that our system does not violate the CHSH bound does not mean that our 

system could be fully described by a local hidden variable theory. The contradictions we derived 

in previous section already showed that this is not the case. 

So, violating the CHSH bound implies violating local hidden variable theory. But not violating 

CHSH bound DOES NOT imply not violating local hidden variable theory. 

8. Conclusion 

In our construction in this paper the dual vector ⟨   that we defined represents an outcome value 

of either +1 or -1 when an observable O is measured for a certain state   ⟩. It does not, however, 

represent the conjugate transpose of a quantum state. Therefore, ⟨   ⟩ is an outcome value of the 

observable O when it is measured on   ⟩ NOT the inner product between two states. Hence, 

(Eqn 2) and (Eqn 3) do not define an inner product. In fact, an inner product is impossible for our 

system because the Galois field is cyclic (Source 1). It is because of this lack of inner product 

that our system fails to violate the CHSH bound of 2 for classical hidden variable theory (Source 

1). Because the authors argued that the derivation of the CHSN bound value of  √  for the 

regular quantum mechanics on Hilbert space involves extensive usage of inner product, which is 

perfectly defined in Hilbert space (Source 1).  

Also, the fact that the observables               defined in our system can transform into each 

other under the permutation group     (  ) (  ) (  ) (   ) (   ) (  )  and the fact they 

can only take values of   , imply that these observables behave similarly to the spin operator in 
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Hilbert space quantum mechanics (Source 1). So we can think of our set of observables as the 

Galois field analog of the Hilbert space quantum mechanics spin operator. 

Other than that, I think we have successfully ‘synthesized’ a mini quantum mechanical model on 

the finite Galois field   . I think that the idea of removing quantum mechanics from the Hilbert 

space and trying to rebuild it on a different algebraic structure is a uniquely interesting idea. 

Because it reveals some unknown aspects of the mathematical foundations of quantum theory. 

For example, only by examining the Galois field, are we able to find out the role of the inner 

product in producing the CHSH limit of  √  for quantum theory on Hilbert space. There are 

many more yet to be discovered algebraic aspects of quantum theory that the new quantum idea 

promises to offer. In this respect, I think the authors of this Galois field quantum mechanics have 

found a new route to better understanding of quantum theory.   
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