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  In 1956, Robert Brown and Richard Twiss devised an interferometer that would  

   measure the intensity correlations of light. Their purpose was to determine the  

  apparent angular diameter of any given star. Though this experiment can be  

  explained entirely through classical physics, it has played a part in furthering 

the field of quantum optics. 

 

 

 

 

I. Introduction 

 

Since stars are essentially point-like when viewed from Earth, directly measuring the apparent angular 

diameter of a star is not possible. With their published work, “A test of a new type of stellar 

interferometer on Sirius” Brown and Twiss described in detail their method and its results. Two 

Photomultiplier tubes were aimed at the Star. Light was collected into the tubes with the use of two 

SiO-coated mirrors of diameter 6.5m. The interference effect observed between the two intensities 

revealed a positive correlation between the two signals, even though no phase information had been 

collected.  

 

This is not the first time coherence (meaning the quantization of the degree of correlation between two 

separate beams of light) had been used experimentally. In 1920 Michelson and Pease measured the 

angular diameter of Betelgeuse. Their apparatus had been devised to measure the correlation of the 

electric field; the end of a telescope tube is closed with a mask with two apertures, and thus fringes are 

produced at the focus. But attempts to enlarge the phase interferometer and make the method applicable 

to dimmer stars failed. 

 

Unlike this former experiment though, the Brown and Twiss method examines the correlation between 

the intensities of two beams of light (intensity interferometry). In the words of quantum mechanics, one 

measures the rate of photons arriving at each sensor. This method proves to be much less sensitive to 

outer influences, (such as scintillation), and thus gives far better results than the Michelson 

interferometer in determining the apparent radius of stars. 

 

 

 

 

II. Classical Perspective 

 

We treat the incident electromagnetic radiation as a classical wave. Light has an amplitude that moves 

on propagating wavefronts from its source. If E is the amplitude, then the intensity is: 
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The equations of the electric field for two light waves from the same source, passing through two 

pinholes and reaching a point P after covering different distances are: 
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The effects caused by the addition of amplitudes are known as interference (constructive, destructive).  

The energy received is equal to the average value of the square of the resultant amplitude. Thus for two 

interfering waves, the resultant intensity at a certain point is:  
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Thus for two interfering waves of equal amplitude, the intensity at a point can vary from zero to four 

times the average intensity due to a single wave. This is visually confirmed by the formation of fringes, 

which were first observed in the 17
th

 century, and were not satisfactorily accounted for until 1801 and 

Thomas Young’s experiments. 

 

 

In the example above, the waves had constant phase and amplitude. Laser light may have such 

characteristics (to a certain degree), but the light of stars though does not. Produced from a multitude of 

individual atomic emissions, this light has a wide frequency spectrum and a constantly fluctuating 

phase. Thus, in order to observe interference fringes, we must arrange that the signals coming from the 

same atomic sources are constant. By having two limited regions (pinholes) from which we receive the 

light of a star we can observe coherent signals (signals that produce fringes when interfering). The 

limits of the regions are directly related to the apparent angular extent of the source. It is useful to 

introduce the term first degree of coherence: 
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The stellar Michelson interferometer provides a direct method of measuring the function (1)

1 2( , )g r r . 

 

Using the Van Cittert-Zernike Theorem we have the dependence of the coherence on the distance for an 

extended source (such as a star). "The complex degree of coherence between P1 and P2 in a plane 

illuminated by an extended quasi-monochromatic source is equal to the normalized complex amplitude 

in the diffraction pattern centered on P2 that would be obtained by replacing the source by an aperture 

of the same size and illuminating it by a spherical wave converging on P2, the amplitude distribution 

proportional to the intensity distribution across the source." 

 

 



In the case of intensity interferometry we examine the fluctuations of the intensity of the incident 

waves. The fluctuations in phase are present but are unnecessary information. The correlation measured 

in the intensity interferometer is proportional to 1 2I I∆ ∆ , 

where I∆ the average fluctuation of the intensity I at each 

detector. 

 

We use the second order correlation function which measures 

the coherence of the intensity 

 

 

1 1 2 2 1 1 2 2(2)

1 1 2 2 2 2

1 1 2 2

( , ) ( , ) ( , ) ( , )
( , ; , )

( , ) ( , )

E r t E r t E r t E r t
g r t r t

E r t E r t

∗ ∗

=  

 

 

which can be written in terms of intensities: 
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The two photocathodes detect the light from two different points. The signals are multiplied and 

integrated in a correlator from which we get: 
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If we examine two monochromatic plane waves: 
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where: 0 1 2r r r= −  

 

The Brown and Twiss interferometer has a number of advantages. Larger light-gathering capacity 

allows for determining the apparent angular diameter of much dimmer stars, it relies on electronic 

rather than visual observation and it is not affected by scintillation.  

 

 

 

 

 

 

 

 

 



III. Photons 

 

Using quantum mechanics, the second order correlation function can be regarded as being proportional 

to the probability of detecting a second photon a time τ after the first one. 

 

Two bosonic particles, a and b, are detected by two 

detectors, A and B. The amplitude of detecting one of the 

particles in a detector is |a i  and |b i  respectively. 

We assume that the amplitudes of detecting a particle in 

either detector are equal. 
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We examine the probability of detecting exactly one particle in each detector. This depends on whether 

the particles are identical or not. For non-identical, the total probability is equal to the sum of detecting 

(a in A, b in B) plus (a in B, b in A). 
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When dealing with identical, bosonic particles the probability is: 
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Thus we see in the case of the identical particles the two amplitudes interfere constructively to give a 

joint detection probability twice that for two independent events. This results in the effect known as 

photon bunching, whereupon photons have a statistical tendency to arrive simultaneously at a detector.  
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