
A Simple Introduction to Finite Element Analysis

Allyson O’Brien

Abstract

While the finite element method is extensively used in theoretical and applied mathematics
and in many engineering disciplines, it remains surprisingly unused within the physics com-
munity. This paper is intended to introduce FEA in the context of a numerical solver for
physics problems, concentrating primarily on solving Schrödinger’s equation over complicated
boundaries.

1 Introduction

The Finite Element Method (FEM) or Finite Element Analysis (FEA) is a numerical tool that
is highly effective at solving partial and nonlinear equations over complicated domains. It is an
application of the Ritz method, where the exact PDE is replaced by a discrete approximation which
is then solved exactly. FEM approximates the exact PDE as a matrix equation. The size of the
matrix is dependent on (i) the size of the the domain over which the PDE exists and (ii) the desired
accuracy of the approximation. Solving a large system accurately requires solving a large matrix
equation. More detail will be provided in a later section.

Figure 1: Univformly Charged Disk and Uniformly Charged Smiley Face.

Analytic solutions to physical or mathematical systems are often limited to simple shapes and
straightforward boundaries that are rarely the objects of interest in physics[1]. In electrostatics,

1

2 TESSELLATION

the values of both the electric potential and electric field lines inside a uniformly-charged disk can
be solved using a pencil and paper. Change the domain of the physical system just slightly (say,
to that of a uniformly-charged smiley face) and the calculations become much more complicated.
In biophysics, FEA can be used to model square-integrable functions over the complicated surface

Figure 2: Velocity-distribution data of a gas of rubidium. Pictured left to right: before the ap-
pearance of a BoseEinstein condensate, just after the appearance of the condensate, after further
evaporation, leaving a sample of nearly pure condensate[3]

.

of a blood cell. As figure 2 shows, FEA can be used in thermal physics to model gases forming
a Bose-Einstein condensate. Numerical modeling of Schrödinger’s equation is a particularly useful
application of FEA in quantum dynamics. Examples of this application will be shown throughout
this paper, but first we introduce the basic methods of FEA. These are:

1. Tessellation (discretization of the domain)

2. Matrix computation (computing the approximated PDE)

3. Solving the matrix approximation (eigenvalue problem)

4. Visualization of solutions

2 Tessellation

The finite element method approximates a variational problem as a solvable numerical problem by
reducing the degrees of freedom of the system to a finite number. The terms discretization and
meshing are used within FEA literature to describe this step. While FEM can involve tessellation
of both space and time dimensions, this paper will only introduce space-dimension tessellation.[5]

In practice, a distribution of discrete points is placed inside and along the boundary of the
function. These points, known as vertices or nodes, are where the function will be evaluated. The
vertices are then connected to form small, simple and uniform geometries called finite elements.
The domain of the discretized unknown function is a composite of these tiny geometries.

To better understand the idea of tessellation, an analogy can be made with the more familiar
term of pixelation. If the domain of our analytic solution is, say, the shape of a big mushroom from

2

3 FINITE ELEMENT VALUES

(a) Analytic Mario Function (b) Discretized/pixillated Mario Function (c) Refined Mesh Mario Function

Figure 3: Approximations of Mario’s Big Function Mushroom

Super Mario Bros. (Figure 3), the smooth domain of the analytic solution is then “pixelized” into
a finite-dimensional function space that can be solved numerically.1

The “Mario example” of tessellation provided above shows a 2D object approximated as a
composite of tiny triangles. Felippa’s book Introduction to FEM provides a figure of the types of
geometries typically used in one, two and three dimensional finite element methods.[4]

Choosing the appropriate number of vertices used can be tricky. The number of vertices de-
termines the size of the matrix to be diagonalized. Highly accurate approximations produce large,
difficult-to-calculate matrices while quicker calculations run the risk of producing shoddy results.
Knowing the physics behind a problem can produce more accurate approximations with less com-
putational cost. Given a sense of how the function may vary in space, we can concentrate the
distribution of nodes where the system will vary more rapidly and not over-populate portions of the
domain with little variation.[6] As an example, consider modeling a melting ice cube over a short
time. The physics of heat conduction suggests that we concentrate nodes near the edges of the
bound region. The computational cost of a model thus depends on both the physical knowledge of
the programmer and the complexity of the problem to be solved.

To illustrate, we “morph” the problem of a particle in a box is morphed into a strange geometry.
The first few eigenvectors of the box domain can be calculated using elementary quantum mechanics,
but it is more complicated to guess those of the the “not-box” shown in figure 4. The geometry
of our not-box is defined and tessellated (figure 5) using MATLAB’s pdetool, a graphical partial
differential equation solver. Refining this mesh (adding more nodes) adds considerable time to
calculating the eigenvectors and eigenvalues, while using fewer vertices than shown produces only
poor approximations of the ground state solution.

3 Finite element values

Once the bounded region has been tessellated, we solve for the unknown function over the resulting
finite elements The overall strategy can be summarized as solving the equation on each of our tiny
elements and then “stitching” the results together, though the actual process is somewhat more

1Figure 3(b) is a better depiction of meshing in the finite difference method. The finite element method is preserves
boundaries quite efficiantly.

3

3 FINITE ELEMENT VALUES

(a) GS Eigenvectors of a Particle In A Box (b) GS Eigenvectors of a Particle In A Not-A-Box

Figure 4: Particle-in-a-box vs particle-in-a-not-box

Figure 5: The quality of the geometries is color-coded. Qualities above 0.6 (anything not bright
blue) are considered acceptable quality by MATLAB [8]

complicated. The goal is to find small solvable matrices that can be substituted into a large N ×N
matrix (N is the number of nodes) to form an approximation of the complete system.

Each element is defined by a unique set of identifiable vertices. Within an element, the positions
of the vertices are described using natural coordinates consistent with the elements’ geometry
instead of standard Euclidean coordinates. These coordinates, or basis functions, allow us to
compute the solution over each element in terms of the value of the unknown function at the vertices
defining the element. In our particle example, the natural coordinates are triangular coordinates.
We will label the basis vectors ζ1, ζ2, ζ3, and define each such that ζ1 + ζ2 + ζ3 = 1. The vertices of
our triangular element will be denoted by r1, r2, r3 (see figure 6). Any point on a particular triangle

4

3 FINITE ELEMENT VALUES

Figure 6: Basis Functions in Natural Coordinates

element T can be described using a weighted sum of the basis vectors:

r = ζ1r1 + ζ2r2 + ζ3r3 (1)

We can now write the piece of the unknown function ψ(r) in terms of the vertices as defined in
our triangular coordinates:[2]

ψ(r) = ζ1ψ(r1) + ζ2ψ(r2) + ζ3ψ(r3) (2)

Using a little geometry2, the integral of function ψ(r) on T is,∫
T

ψ(r) dr = 2A

∫ 1

0

∫ 1−ζ2

0

ψ(ζ1r1 + ζ2r2 + (1− ζ1 − ζ2)r3 dζ1 dζ2 (3)

where A is the area of element T . This is equation shows our function as linear interpolation
(curve fitting using linear polynomials). [2] Because the basis functions sum to 1 by definition, our
function is already normalized. If our geometry is sufficiently small, we can assume the variation
of our function inside the triangle is negligible. We can then approximate ψ(r) everywhere in the
triangle as the solution calculated in the center of our geometry[4].

The integral of the square magnitude of ψ(r) is well defined:3∫
T

|ψ(r)|2 dr = 2A

∫ 1

0

∫ 1−ζ2

0

|ψ(ζ1r1 + ζ2r2 + (1− ζ1 − ζ2)r3)|2 dζ1 dζ2 (4)

The above equation shows is a bilinear interpolation (product of two linear functions) of the square
of our function.[9] Unfortunately the solution is not as simple as in Cartesian space since our basis
functions are not orthogonal. Computing these overlap integrals is necessary to solve the “particle-
in-a-not-box” system and many other quantum-mechanical problems.

It is important to remember that the natural coordinates for our triangles exist only within
the triangle.[6] Each triangle T in our domain has a set of basis functions, ζ1, ζ2, ζ3 that exist only
within the domain of the vertices rvert describing that triangle. The stationary solutions described
in each function ψTwill “add up” to form the overall solution. A brief description is provided in
the next section.

2described in Fischer [2]
3Since our example problem deals only with bound states, the integration shown here uses only the real part of

ψ(r). This will not always be the case.

5

5 CONVERTING TO CARTESIAN COORDINATES AND SOLVING

4 Plugging in a function

In the particle-in-a-not-box problem, we defined the boundaries and showed the tessellation of our
object in figure 5. We can now solve the Schrödinger equation within each element by defining it
in its original variational form and using the variational principle.

δ

∫
ψ∗(r)

(
−
(

~2

2m

)
∇2Ψ(r) + V (r)ψ(r)− Eψ(r)

)
d3r = 0 (5)

The quantum-mechanical variational principle states that if the Hamiltonian is known but the
ground state of the Schrödinger equation is unknown, then the ground-state energy is bounded by

EGS ≤ 〈ψT |H|ψT 〉 . (6)

for any normalized wavefunction |ψT 〉.[7] To determine the values of each part of the equation,
we consider each term separately and find solutions for potential, kinetic, and total energy in each
element in terms of the vertices. Each term will yield a 3×3 matrix for every element. A description
of this process can be found in [6].

5 Converting to Cartesian coordinates and solving

The next hurdle is finding a solution in terms of Cartesian (x,y) coordinates. The discrete functions
at each element can be expressed in terms of a functional that depends on the vertices of the triangle
and the (x,y) coordinates of those vertices.

ψ(r(x, y)) = ζ1ψ(r1(x, y)) + ζ2ψ(r2) + ζ3ψ(r3) (7)

This functional can be transformed into an ordinary function ψx,y by a transformation matrix. To
derive the transformation matrix, we start by decomposing our vertices into x and y values. For
example, the nodes r1, r2, r3 in the last section will be described by r1 = (x1, y1), r2 = (x2, y2) and
r3 = (x3, y3). The interpolation formula still applies:

x = ζ1x1 + ζ2x2 + ζ3x3 (8a)

y = ζ1y1 + ζ2y2 + ζ3y3 (8b)

Remembering that ζ1 + ζ2 + ζ3 = 1, we can derive a simple matrix to show these relations: 1
x
y

 =

 1 1 1
x1 x2 x3
y1 y2 y3

 ζ1
ζ2
ζ3

 (9)

This matrix can be inverted in order to revert to Cartesian coordinates:[5] ζ1
ζ2
ζ3

 =
1

2A

x1y3 − x3y2 y2 − y3 x3 − x2
x3y1 − x2y3 y3 − y1 x1 − x3
x1y2 − x2y1 y1 − y2 x2 − x1

 1
x
y

 (10)

We now have a rubric for transforming back to Cartesian coordinates. The final approximation
will be a composite of all overlap integrals (in the form of 3× 3 matrices) solved in natural coordi-
nates. This approximation will then be transformed back into Cartesian coordinates by the above
transformation matrix. Since all of the points are taken into account, the large matrix will now
be have dimensions N ×N where N is the number of nodes. The generalized matrix equation can
then be solved.

6

REFERENCES

6 Solutions

(a) First Excited State (b) Second Excited State

Figure 7: First Two Excited States of our Particle-in-a-not-box.

Solving generalized matrix equations can be computationally demanding, with computing time
depending on the software and hardware used. Fast computer algebra systems (software that facili-
tates symbolic mathematics) such as Mathematica, Maple, and MATLAB (“MATrix LABoratory”)
are widely available.[8] Most of these programs use the same, or very similar algorithms. Many
of these programs come with packages for FEA such as MATLAB’s pdetool, which we mentioned
earlier. The ground state for our particle-in-a-not-box is shown in figure 7(a) and figure 7(b) shows
the first few excited states.

7 Conclusion

Though these results are fun to look at, there are many practical problems in quantum mechanics
which cannot be easily solved by even the most sophisticated software. Current commercial and
academic software for FEM is not often designed with physics research in mind, though it is our
hope to change this fact in the not-too-distant future.

References

[1] Ivo Babuska. Generalized finite element methods: Main ideas, results, and perspective. Inter-
national Journal of Computational Methods, 1(1):67103, June 2004.

[2] Christopher J Bradley. The Algebra of Geometry: Cartesian, Areal and Projective Co-ordinates.
Highperception, Bath, 2007.

7

REFERENCES REFERENCES

[3] Eric A. Cornell, Carl E. Wieman, Eric A. Cornell, and Carl E. Wieman. The Bose-Einstein
condensate. Scientific American, 278(3):4045, 1998.

[4] C. A Felippa. Introduction to finite element methods, 2001.

[5] C. A Felippa. A compendium of FEM integration formulas for symbolic work. Engineering
Computations, 21(8):867890, 2004.

[6] Robert Gilmore. From wave mechanics to matrix mechanics. Not Yet Published, 2010.

[7] David J. Griffiths. Introduction to Quantum Mechanics (2nd ed.). Prentice Hall, 2004.

[8] MATLAB. PDE Toolbox: Uer’s Guide. Mathworks Inc, 1995.

[9] Wikipedia. Bilinear interpolation.

8

