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Abstract

There are deep connections between thermodynamics and
Einstein’s theory of General Relativity (GR). The most im-
portant example in astrophysics is the fact that we can define
appropriate quantities to write down three laws of Black Hole
(BH) mechanics which are analogous to the three laws of ther-
modynamics. I will here discuss the significance and origin
of these laws as well as the implications of the relationship
between thermodynamics and GR for cosmology.

1 Introduction

It was found in the 1970s by Hawking and Bekenstein that we can
associate with a black hole an entropy which is proportional to the
surface area of its event horizon. Following this, three laws of BH
mechanics, directly analogous to the three laws of classical statistical
mechanics, were found. It seems then that there may be further
connections between GR and thermodynamics and that this may
pave the way for a quantum theory of gravity.

This paper is organized as follows: In section 2, I state and discuss
the three laws. In 3, I discuss equilibrium properties on BH from
thermodynamic considerations. In 4, I discuss some of the quantum
theory behind BH and problems associated with it. In 5, I consider
possible ways of interpreting BH entropy, and how it relates to the
more familiar entropy from thermodynamics. In 6, I very briefly
note the relative importance of BH entropy compared to the rest of
the entropy in the universe and its role in the formation of cosmic
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structure. Finally, in 7 I discuss some further implications of the
GR-thermodynamics relationship, including the idea that Einstein’s
field equations may be derivable from thermodynamics.

2 The Three Laws

Noting the apparent requirement that BH area always increase, Beken-
stein supposed an analogy between this and entropy [1]. Further ev-
idence for this proposal is the increase of irreducible mass (see the
section on Interpretation) and the observation that, just as one can
obtain work by putting two systems which are independently in equi-
librium together, this irreducible mass can decrease in BH mergers.

2.1 The First Law

Using the result that the ”rationalized area” of a BH can be written

α = A/(4π) = (M + (M2 −Q2 − L2/M2)1/2)2 + L2/M2 (1)

Taking the derivative, Bekenstein finds the relation

dM = (r+ − r−)/(4α)dα+ ~L/(Mα) · d~L+Qr+/αdQ (2)

where r± = M ± (M2 −Q2 − L2/M2)1/2. This is similar to the first
law of thermodynamics!

dE = TdS − PdV (3)

The first term, as has been said, is the analogous entropy. The
second is work done on the BH which increases its angular momen-
tum and the third is work done that increases its charge.

2.2 The Second Law

Bekenstein proposes a ”Generalized Second Law” of thermodynam-
ics:
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∆(SBH + Sthermo) ≥ 0 (4)

It makes sense to have this generalization, because when a par-
ticle falls into the event horizon, its information is apparently lost
to the outside universe, and so that is a decrease in entropy. A cor-
responding (greater or equal) increase in the BH entropy thus saves
the second law.

2.3 The Third Law

In writing down the total mass inside and outside an event horizon,
Bardeen et al find a term [4]:

1/(4π)

∫
κdA (5)

where κ = −∇blanalb , n is a null vector normal to the surface
being integrated over, and l is a null vector tangent to the genera-
tors of the horizon. This quantity is interpreted as follows: a particle
outside the event horizon which rotates with the BH has an angu-
lar speed Ω and four-velocity va = vt(Ka + ΩK̃a), where Ka is a
time translational Killing vector. The particle then has acceleration
1/vt∇b(va)vb, which approaches κ as the particle is brought infinites-
imally close to the horizon. Therefore, κ is interpreted as the BH
surface gravity, and it is found to be constant over the horizon [4].

The first law then has the term κ/(8π)δA, and so κ is interpreted
as being the BH temperature (Note that we then also have a ”Zeroth
Law” of BH mechanics because this quantity has been found to be
constant). A Third Law, analogous to that of thermodynamics, could
then be established if the surface gravity cannot be brought to zero
in a finite number of steps. Bardeen et al does not prove this, but
argues in favor of it by considering the following method of decreasing
κ:

We can throw particles into a BH to increase angular momentum
and decrease surface gravity. For a Kerr BH, it was found that

κ = (M4 − J2)1/2/(2M(M2 + (M4 − J2)1/2)) (6)
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where J is the angular momentum. So, κ = 0 when J/M2 = 1.
This decrease of κ becomes smaller with each particle as this ratio
approaches 1 and it would take an infinitely long time to achieve this.

3 Black Hole Stability

An interesting application of BH horizon thermodynamics is in study-
ing the stability of BH. In this framework, there are five thermo-
dynamic variables E,P, V, T, S. From these, we can derive other
thermodynamic quantities like specific heat, Gibbs free energy, com-
pressibility, and an expansion coefficient to study the stability of a
BH.

(Padmanabhan’s horizon thermo gives first law from GR) For a
static, spherically symmetric spacetime, we can write

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2 (7)

,
where f(r) = 1− 2m(r)/r.
Plugging this into the Einstein equation gives us for both the 00

and 11 component

dm/dr = −4πr2T 0
0 (8)

.
The proportionality of temperature and surface gravity

T = κ/(2π) = −1/(4π)
∂rgtt√
−gttgrr

|r=r+ (9)

then gives us an equation of state

1/2 = 2πr+T − 4πr2+T
0
0 (10)

Multiplying by dr and integrating, we also find the first law of
horizon thermodynamics for a black hole

dE = TdS − PdV (11)
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Now, by integrating eq. (8), we can get the mass at the horizon
and vary it to obtain

δM = (1/(4πr+) + 2r+T
0
0 )δA/4− (4π

∫ ∞
r+

r2
∂T 0

0

∂Q
dr)δQ (12)

,
which gives the more familiar first law of BH thermodynamics

δM = TδS + φδQ (13)

Since we derived both of the boxed equations above from the
same field equation, they can be derived from each other. However,
they yield very different stability properties. To see this, we can
rewrite the equation of state (10)

P = T/(2r+)− 1/(8πr2+) (14)

and use V = 4π/3r3+. For stable equilibrium, we require ∂P
∂V |T ≤

0. The constraint we then get for temperature tells us that P ≥
1/(8πr2+) > 0.

Another criterion is that the specific heats obey

CP ≥ CV ≥ 0 (15)

.
The definition is

CP = T
∂S

∂T
|P =

2πr2+(8πPr2+ + 1)

8πPr2+ − 1
(16)

Zero pressure gives negative CP . Therefore, we must have P > 0,
and we see that the larger a BH is, the more stable it will be when
the horizon radius exceeds the critical radius.

However, after examining some special cases, it turns out nearly
all static, spherically symmetric BH are unstable, according to this
form of the first law! For instance, in the case of a Reissner-Nordstrom
BH, the stress-energy tensor tells us that the pressure is negative, so
this BH apparently cannot be stable. This is not the case when
beginning from the more familiar first law of BH thermodynamics,
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because each form uses different thermodynamic variables, but it is
not obvious which set of variables is the better choice.

3.1 Space of Equilibrium States

Quevedo and Vazquez show that it is also possible to define a metric
tensor in the space of equilibrium states of a thermodynamic system.
Writing the first law as

dM = TdS + ΩdJ + φdQ (17)

,
we can write a fundamental equation M = M(S, J,Q) for a ro-

tating, charged BH in the form

M = (πJ2/S + S/(4π)(1 + πQ2/S)2)1/2 (18)

The space of equilibrium states (rather than spacetime) is thus a
3D, with coordinates corresponding to the BH’s three variables. For
J = 0, this gives the ”Reissner-Nordstrom” metric [3]

gRN = 1/(2S2)(πQ2 +S)(1/(8πS)(3πQ2−S)dS2−QdSdQ+SdQ2)
(19)

The limit of thermodynamic stability is at the singularities of this
metric [3]. The curvature scalar of the metric is

RRN = −8π2Q2S2(πQ2 − 3S)/((πQ2 + S)3 ∗ (πQ2 − S)2) (20)

which has two critical points S = πQ2 and S = πQ2/3 which
correspond, respectively, to the cases M = Q and M = 2Q/31/2.
Near these points, the curvature does indeed correspond to the ther-
modynamic behavior of the BH. This does not, however, appear to
work for the Q = 0 case, for which the curvature is found to be zero,
which cannot be correct. Quevedo and Vazquez state that this is an
apparent failure of geometrothermodynamics, but that the situation
ought to be salvageable with a more careful choice of metric tensor.
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4 Quantum BH Thermodynamics

4.1 Problems with the Classical Theory

There are some problems with the theory so far.
1) The temperature of a BH seems to vanish.
2) In statistical mechanics, entropy is dimensionless, but SBH has

units of length squared
3) The area of a BH does not decrease, but only the total entropy

need not decrease in thermodynamics.

4.2 Quantum

A theory of quantum gravity is necessary for a full treatment of BH
thermodynamics because we need to incorporate quantum physics.
Until we have this, a semiclassical treatment will suffice.

Essential to the field of BH thermodynamics essentially began
with Hawking’s discovery that a BH will emit radiation [2]. In quan-
tum field theory, it is known that even vacuum undergoes fluctua-
tions, producing particle-antiparticle pairs for very short periods of
time before they annihilate. When a pair forms near enough a BH,
one will fall into the horizon and the other can escape.

Hawking thus associated the radiation from a non rotating BH a
temperature TH = ~κ/(2π) , where κ is the horizon’s surface gravity.
The first law then gives

SBH = A/(4~π) (21)

This resolves problems 1) and 2). Additionally, since a BH can
evaporate via Hawking radiation, its area can decrease, so long as the
total entropy is still nondecreasing (the Generalized Second Law).

4.3 The Unruh Effect

An accelerated observer in a Minkowski space vacuum will say there
is radiation with temperature proportional to their acceleration. Al-
though this was discovered later, it is more fundamental than the
Hawking effect and is due to quantum fluctuations of the vacuum
[7].
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5 Interpreting BH Entropy

As in thermodynamics, BH entropy is related to the ”degradation of
energy” in that its increase means more energy is no longer ”useful”
[1]. Increasing the familiar form of entropy means the energy of the
system cannot be converted into work; increasing a BH’s entropy
means that the irreducible mass (in the case of a rotating BH)

Mir = (A/(16π))1/2 (22)

increases. The irreducible mass is mass that cannot be extracted
from the BH via a ”Penrose process.” I will not go into the details of
this theoretical process, but the point is clear; there is more evidence
yet that the BH area-entropy analogy is a deep one.

Introducing an entropy for BH is still troublesome because we
expect, as in statistical mechanics, to be able to express it as a loga-
rithm of the number of possible states it may be in. The first problem
is that this number ought to be infinite. A more familiar thermody-
namic system, a box full of radiation at constant energy and volume,
has a finite number of states because the particles can only be in
some range of wavelengths due to the two constraints. But since the
horizon is a surface of infinite redshift, there is no high-wavelength
cutoff in the case of a BH!

A proposed solution is that it should be possible to renormalize
BH entropy, as is done for quantities in quantum field theory. But
this is problematic because we would expect entropy to count di-
mensions in Hilbert space, and so we should not have to deal with
infinities.

If the Generalized Second Law is true, then the most entropy that
can be contained within an area A is the corresponding BH entropy.
It has been proposed that we should then talk about a finite dimen-
sional space of quantum states on a given region’s boundary rather
than its volume. This is called the Holographic Hypothesis. To gain
some intuition here, we can consider the classical interpretation to
be that we are really talking about the phase space of a gravitating
system. This may be an indication that the Holographic Hypothesis
will be a consequence of a theory of quantum gravity.
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Another attempt at a reasonable definition of BH entropy (by
Bekenstein) is that it is proportional to the log of the number of
ways it could have formed. This is obviously similar to the classical
S = kBlog(Ω). Hawking noted and proposed a solution to a possible
issue with this: If there are more fundamental fields of nature than we
know about, then there would be more ways a BH could have formed,
but the entropy would be unchanged. He then supposed that, in this
situation, we could save this definition of entropy by saying that the
BH will radiate faster due to the extra fields, so each particle takes
up less phase space than before, and perhaps this will cancel what
appeared to give us extra entropy. This is again a highly speculative
issue that requires a quantum theory of gravity to be fixed.

Two other possibilities are that BH entropy is the thermal en-
tropy of Unruh radiation just outside the horizon and that it is ”en-
tanglement entropy,” i.e. a measure of the information in correlated
degrees of freedom inside and outside the horizon. The point is that
it is unclear exactly what BH entropy is in relation to classical ther-
modynamic entropy, but the study of the topic may bring us closer
to a theory of quantum gravity.

6 Cosmic Structure Formation

Cosmic entropy and cosmic structure are found to co-evolve with each
other, with entropy increase being driven by structure formation (e.g.
of galaxies and clusters). Simulations have found that BH entropy
dominates the overall entropy of the universe by about 20 orders of
magnitude.

7 The Einstein Equation as an Equation of
State

One intriguing possible implication of the relationship between ther-
modynamics and general relativistic systems is that Einstein’s field
equation is in fact a consequence of the thermodynamics of space-
time. The argument is as follows [5]:

We start with the fact that BH entropy is proportional to its
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surface area and write the first law, δQ = TdS. Each term must be
interpreted for the case of spacetime dynamics if we are to make the
desired connection.

Just as heat in classical thermodynamics is energy flowing be-
tween the system’s degrees of freedom, we can define heat in our
case as energy flowing across a causal horizon; even if we cannot
observe it from outside the horizon, it still affects us with its grav-
itational field. Entropy can be defined for a causal horizon as well,
as it ”hides” information from outside observers. It is proportional
to the area of the horizon, as in BH thermodynamics. Finally, for
the temperature we use the Unruh temperature seen by a uniformly
accelerating observer just inside the horizon.

For any local Rindler horizon through a point in spacetime, the
heat flux can be written

δQ =

∫
Tabχ

adΣb (23)

This can be rewritten using an affine parameter λ, area element
A and using χa = −κλka:

δQ = −κ
∫
λTabk

akbdλdA (24)

Moving on, entropy of a piece of the horizon satisfies dS = ηδA
for some constant η, and we can write

δA =

∫
θdλdA (25)

,
where θ is the expansion of the horizon generators. Geodesic

deviation gives the Raychaudhuri equation

dθ

dλ
= −(1/2)θ2 − σ2 −Rabkakb (26)

,
where σab is the shear. Finally, the first law then implies the

Einstein equation

Rab − (1/2)Rgab + Λgab =
2π

~η
Tab (27)
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To summarize, by interpreting the thermodynamic variables this
way, the first law then requires that spacetime bend under the influ-
ence of mass/energy according to the Einstein Equation [5].

We can expand on this relationship between thermodynamics and
GR by introducing the pair of variables (fab, N c

ab), where the first
is related to the metric by fab =

√
−ggab and the second is the

canonical momentum. There are analogous to the pair (S, T ) [6] and
we can use them to study gravity by taking the dot product of the
Noether current and integrating in 3 dimensions to find

∫
R
d3x
√
huag

ij(LξN
a
ij) =

∫
∂R
d2x
√
σrα(2Naα)−

∫
R
d3x
√
h(2NuaubRab)

(28)
where L is a Lie derivative and rα is the normal to the boundary

of the 3D region R. Following this, [6] also defines the bulk and
surface degrees of freedom

Nsurf =

∫
∂R

√
σd2x

L2
P

, NBulk =
|E|

(1/2)kBTavg
(29)

The above equation then tells us that coming observers in a static
spacetime will say Nsurf = Nbulk, which means that equipartition
is holographic in these spacetimes! Further, we can find from our
previous equation that∫

d3x

8πL2
P

√
huag

ijLξN
a
ij = ε/2kBTavg(Nsurf −Nbulk) (30)

which means that the dynamics of the spacetime are driven by
the departure from holographic equilibrium.
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