
 
The Hidden Markov Model and Applications in Machine Learning 

 
Joseph Tumulty 

Term Paper for Physics 502 
Drexel University 

 
Submitted: 3/15/16 

 
  
1. Motivation 

The motivation of this paper is to explore and understand the concept of Hidden 

Markov Models.  These models have been applied to speech and handwriting recognition 

software and may provide insight into the learning mechanisms in biological neural 

networks. The idea of a neural network is a complex problem in neuroscience but 

actually presents a solution to many computational problems.  By using the model of the 

network present in the brain, artificial neural networks can be created and used to solve 

computational problems.  The theoretical framework of these problems can act as a 

simulation that can give insight into the mechanisms of biological neural networks by 

comparisons of results with experimental data. Although the focus of artificial neural 

networks in computing is not primarily focused on the inner workings of the brain, there 

may be a possibility to apply the work to computational neuroscience research. 

 The Hidden Markov Model is also a very robust method for determining the 

nature of any input signal given an output.  By the nature of the problem, the model 

determines the most probable set of parameters dictating input states based on the 

sequence of output states.  This can be applied to many problems where the nature of the 

input is known but not the specific parameters dictating its behavior.  An example of this 

would be in the sequencing of DNA [1].  There are hidden states (e.g. CpG island or non-

CpG island) that change the probability of generating a certain sequence of nucleotides.  

The mechanisms of these hidden states are not fully understood and so by using the 

output (nucleotide sequence, ACTGCG…) and a Hidden Markov Model, we can 

determine the most probable parameters associated with the hidden states.  

 

2. Background 



To understand the idea of Hidden Markov Models (HMMs) we start first with the 

Markov model of a network (this was discussed in class but I will include this for 

continuity).  In the Markov model each node of the network is connected to other nodes 

with some probability of transition from one node to another.  The probability of the 

system being at the node is dependent only on the previous state. If we label the state 

where our system is at node 1 as 𝑆! and let our state at any time 𝑡 be denoted as 𝑞! then 

our probability of being at any state 𝑗 can be denoted by, 

𝑃 𝑞! = 𝑆! 𝑞!!! = 𝑆!) = 𝑎!" , 

where we have defined 𝑎!" to be the transition probability from state 𝑆! to state 𝑆!. 

These transition probabilities can be represented in a Markov probability matrix with 

many useful properties. The matrix, 

𝐴 =
𝑎!! 𝑎!" 𝑎!"
𝑎!" 𝑎!! 𝑎!"
𝑎!" 𝑎!" 𝑎!!

, 

has the property that each row sums to 1 because each row represents the probability of 

any one state 𝑖 transitioning to any other state 𝑗 (Note: This convention is swapped from 

what was discussed in class).  It also is useful in calculating the probabilities of being in 

some state at a later time 𝑡 (𝑡 can be thought of as the number of steps, where there is a 

state transition at each step).  To determine this probability we just raise the matrix to the 

power of the number of steps, 𝑡. So, the probability of being in state, 𝑆!, after 𝑡 steps 

having started in state 𝑆! is, 

𝑃 𝑞! = 𝑆! 𝑞! = 𝑆! = (𝐴!)!" 

where the 𝐴! indicates the matrix raised to the 𝑡th power (not the transpose). 

 Although this is a useful property, we will find that when we transition into the 

Hidden Markov Model it will be more beneficial to consider a specific sequence of states.  

In the case of this simple Markov model, this sequence of states is our output, 𝑂. 

𝑂 = {𝑆!, 𝑆!, 𝑆!, 𝑆!,… } 

The probability of this sequence is given by the product of transition probabilities in the 

sequence, 

𝑃 𝑂 𝐴 =   𝜋! ∙ 𝑎!" ∙ 𝑎!" ∙ 𝑎!" ∙… 



where 𝜋! has been introduced as the probability of starting in the state 𝑆!.  The above 

description of a simple Markov process is not complete but sufficient for transitioning to 

HMMs.  Most importantly it introduced the variables and framework where we will be 

working. 

 

3. The Hidden Markov Model 

 The transition to the Hidden Markov Model consists mainly of generating another 

output from each state; each output having its own probability of occurring.  The classic 

example given is that of a genie in a room with a number of urns.  These urns each 

contain a certain number of balls of different colors.  The genie chooses an urn based on 

some random process.  This determines the state (if the output were the urn this would be 

analogous to the simple Markov process outlined above).  The genie then selects a ball 

from that urn which has a certain probability of being chosen based on the urn.  This 

colored ball is then the output and it is the only thing that the observer sees.  The urn on 

the other hand is hidden, hence the name. The transition probabilities between states 

(urns) is given by the familiar matrix, 𝐴. The probabilities of outputs (color of ball) are 

given in 𝐵 = {𝑏! 𝑘 }, where  

𝑏! 𝑘 =   𝑃 𝑣!   𝑎𝑡  𝑡 𝑞! = 𝑆! , 

is the probability of output 𝑣! given state 𝑆!. 

There are three main questions presented in the analysis of a Hidden Markov Model. 

They are the following: 

1. What is the probability of getting a certain observation sequence given a model? 

Here the model is given by the parameters 𝜆 = (𝐴,𝐵,𝜋) 

2.  What is the most probable state sequence given a certain observation sequence 

and model? 

3. Finally, and most importantly, what is the best set of model parameters 

𝜆 = 𝐴,𝐵,𝜋  for a given observation sequence (output)? 

The solutions to these problems as well as the source for this notation convention was 

first presented by L. E. Baum and are compiled and well presented in a paper by L. R. 

Rabiner [2]. I will summarize the results below. 



 For the first problem, we could “brute force” it by: generating every possible 

sequence of states, calculating the probability of generating the given output for each 

state sequence, and summing the resulting probabilities for all sequences. 

Computationally this turns out to be unrealistic. The number of computations is on the 

order of 2𝑇 ∙ 𝑁!.  For any reasonably sized network or process this is too large.  Instead, 

we use “forward” and “backward” variables. These are defined respectively as 

𝛼! 𝑖 = 𝑃 𝑂!𝑂!𝑂!…𝑂! , 𝑞! = 𝑆! 𝜆                      forward   

𝛽! 𝑖 = 𝑃 𝑂!!!𝑂!!!…𝑂! 𝑞! = 𝑆! , 𝜆               (backward) 

They can both be used to find a solution to problem 1 but we will focus on the forward 

variable for simplicity and brevity.  The interpretation of the variable is the probability of 

a certain observation sequence, up until time 𝑡, and a state 𝑆!, at time 𝑡, given a certain 

model.  To find the total probability of this sequence up until time 𝑇 for all state 

sequences, an inductive algorithm is used: 

1)          𝛼!(𝑖) = 𝜋!𝑏!(𝑂!)  

2)          𝛼!!! 𝑗 = 𝛼! 𝑖 𝑎!"

!

!!!

𝑏! 𝑂!!!                   1 ≤ 𝑡 ≤ 𝑇 − 1  

3)          𝑃 𝑂 𝜆 =    𝛼!(𝑖)
!

!!!

 

This induction initiates with a state 𝑖 at 𝑡 = 1 (this is calculated for all states 𝑖).  Then, at 

each subsequent 𝑡 the probabilities of each state are calculated by summing over each 

probability up until that point, 𝛼!(𝑖), multiplied by the probability of transition to the new 

state, 𝑗.  The probability of the output, 𝑏!(𝑂!!!), is also included for each new 𝛼 because 

we are ultimately looking for the probability of a certain observation sequence.  The last 

step is simply summing over probabilities for every final state 𝑖.  This tells us the 

probability of getting an observation sequence given a certain model 𝜆, and it does so 

with an order of 𝑁!𝑇 calculations. 

For the second problem we are looking for the most probable state sequence.  One 

possibility for finding this would be to individually find the most probable state for each 

observation.  This would be valid in a sense but neglects the fact that that states have their 

own transition probability and this method could generate a state sequence which is either 



highly unlikely or impossible (in the case where some element of 𝐴 is 0).  Instead of 

maximizing the probability of each state given an observation, we maximize the overall 

probability of the state sequence given the observation sequence, i.e. maximize 

𝑃(𝑄|𝑂, 𝜆).  This turns out to be equivalent to maximizing 𝑃(𝑄,𝑂|𝜆).  To maximize this 

probability we invoke the Viterbi Algorithm introduced by A. Viterbi in 1967 [3] and 

summarized in the paper by Rabiner [2].  

To do this we introduce the “best path” probability (named by me but created by 

others), 𝛿! 𝑖 , which represents the maximum probability for a path (including the 

observation sequence up to time 𝑡) that ends up in state 𝑖. It can be represented as: 

𝛿! 𝑖 = max  𝑃 𝑞!𝑞!… 𝑞! = 𝑖,𝑂!𝑂!…𝑂! 𝜆  

where the “max” is over different sequences 𝑞!𝑞!… 𝑞!.  This variable only tells us the 

max probability. Therefore, to keep track of the actual sequence we introduce the variable 

𝜓!(𝑗). This captures the state, 𝑖, which maximizes the probability at the transition 𝑖⟶ 𝑗. 

We can the use these in an inductive algorithm as follows: 

 

1)            𝛿! 𝑖 = 𝜋!𝑏! 𝑂!                     1 ≤ 𝑖 ≤ 𝑁  

                    𝜓! 𝑖 =   0 

  

2)          𝛿! 𝑗 = max!    𝛿!!! 𝑖 𝑎!" 𝑏! 𝑂!               2 ≤ 𝑡 ≤ 𝑇  

                  𝜓! 𝑗 = argmax!    𝛿!!! 𝑖 𝑎!"                         1 ≤ 𝑗 ≤ 𝑁 

  

3)        𝑃∗ = max!   [𝛿! 𝑖 ]  

                𝑞!∗ = argmax!    𝛿! 𝑖  

  

4)        𝑞!∗ = 𝜓!!! 𝑞!!!∗                   𝑡 = 𝑇 − 1,𝑇 − 2,… ,1 

  

The first two steps of the above algorithm are very similar to the algorithm presented for 

problem 1 with the added aspect of finding a maximum instead of summing over terms.  

There is also the added variable that keeps track of the argument that maximizes the 

probability.  The third step simply terminates the recursion and the fourth step backtracks 

over the arguments, reassigning them to the correct time since each maximizing argument 



was placed in the index corresponding to the next time, 𝑡. 

 The presented solution to the final problem is the least intuitive but winds up 

being a sound method.  As a reminder, we are now looking for the set of parameters that 

maximizes the probability of a certain sequence of observations. The one set-back to the 

method is that it is an iterative search around the neighborhood of the initial parameters.  

This means it will find local maxima in probability but will not be able to find the global 

maximum.  This leaves room for error when looking for a specific set of parameters but it 

is effective at finding a characteristic set of parameters or finding the global maximum if 

the user as a good guess for starting parameters.  The method makes use of the forward 

and backward variables defined earlier, and requires the definition of two new variables. 

The first new variable is 𝛾!(𝑖). It is the probability of being in a state, 𝑆! at time 𝑡 given a 

certain observation sequence and model.  It can be represented in terms of the forward 

and backward variables as: 

𝛾! 𝑖 =
𝛼! 𝑖   𝛽!(𝑖)
𝑃(𝑂|𝜆) =

𝛼! 𝑖   𝛽!(𝑖)
𝛼! 𝑖   𝛽!(𝑖)!

!!!
 

This can be reached logically by examining the fact that the forward and backward 

variables compute the probability up to a point 𝑖 and after a point 𝑖, respectively.  The 

denominator makes it a probability measure that sums to 1. 

The other new variable is 𝜉!(𝑖, 𝑗). It is the probability of being in state 𝑆!  at time 𝑡 and 

state 𝑆! at time 𝑡 + 1. It can also be represented in terms of the forward and backward 

variables as: 

𝜉! 𝑖, 𝑗 =
𝛼! 𝑖   𝑎!"𝑏!!! 𝑂!!!   𝛽!!! 𝑗

𝑃 𝑂 𝜆   

                          =
𝛼! 𝑖   𝑎!"𝑏!!! 𝑂!!!   𝛽!!! 𝑗

𝛼! 𝑖   𝑎!"𝑏!!! 𝑂!!!   𝛽!!! 𝑗!
!!!

!
!!!

 

The numerator can be logically derived from the fact that the forward variable gives us 

the first condition, state 𝑆! at time 𝑡, and the transition probability, observation 

probability and backward variable give us the second condition, state 𝑆! at time 𝑡 + 1.  

The denominator as before is a normalizing condition.  

Next we examine the respective sums over time from 𝑡 = 1 to 𝑡 = 𝑇 − 1. For 𝛾 

this gives us the expected number of transitions from the state 𝑆!. For 𝜉, it gives us the 



expected number of transitions from state 𝑆! to state 𝑆!.  These sums can then be used to 

calculate new parameters for our model given a starting configuration, 𝜆 = (𝐴,𝐵,𝜋) 

First, the parameter 𝜋! is a measure of the probability of starting in a certain state.  

Therefore we can use the measure 𝛾!(𝑖) to determine a better value 𝜋! = 𝛾!(𝑖).  Secondly 

we can find a better value for the transition probability between 𝑖 and 𝑗 using the sums 

previously mentioned. 

𝑎!" =
𝜉!(𝑖, 𝑗)!!!

!!!

𝛾!(𝑖)!!!
!!!

 

This is interpreted as the expected number of transitions from 𝑖⟶ 𝑗 divided by the 

expected number of transitions from 𝑖.  Finally we refine our observation probabilities 

using the expected number of times in state 𝑗 and observing 𝑣! divided by the expected 

number of times in state 𝑗. 

𝑏! 𝑘 =
𝛾!(𝑗)!

!!!
!!!!!

𝛾!(𝑗)!
!!!

 

It has been shown that, with every iteration, either the 𝜆 is already at a maximum and the 

values remain unchanged or the probability of the new values increases. 

 This method answers all three questions presented in Hidden Markov Models. Of 

the three problems the second and third tell us what we would like to know about the 

underlying mechanisms creating our output.  They tell us the most probably sequence of 

states as well as the parameters relating those states to each other and to the output.  The 

solution to the first problem acts as a check for a certain set of parameters.  Once we find 

what we believe to be the best set, we can then compute the probability of outputting our 

original observation sequence and compare it with an initial set of parameters.  If the 

probability is higher we know that we have at least moved towards a local maximum in 

the parameter space. 

 

4. Applications and Conclusions 

 As mentioned earlier this method has been used to determine underlying 

properties of DNA sequencing mechanisms.  It has also been very widely used in speech 

and handwriting recognition.  That is because the adjustments of parameters provide an 

opportunity for a network to “learn” when given training.  That is, the programmer does 



not need to come up with an extremely complicated program which will recognize any 

letter in any sloppy handwriting.  The programmer instead implements one of the higher 

order (continuous) forms of the Hidden Markov Model and the hidden states are adjusted 

through the learning process.  This basically allows the program to create its own 

network that will recognize handwriting or speech even with distortions or perturbations 

from what it has seen in training. 

 A possible application of this method to computational neuroscience is clear.  It 

provides a method for allowing an artificial network to learn given appropriate training.  

If we are able to apply a similar method to a neural network which more closely mirrors a 

biological network it would bring to light possible mechanisms in the formation of 

biological neural networks.  We may be able to uncover the way in which certain 

neuronal connections form, if only on a statistical level, in the process of learning. 

 

References: 

[1]  Hao Wu, Brian Caffo, Harris A. Jaffee, Rafael A. Irizarry, and Andrew P. Feinberg. 
Redefining CpG islands using hidden Markov models. Biostat (2010) first 
published online March 8, 2010 doi:10.1093/biostatistics/kxq005 

 
[2] L. R. Rabiner, "A tutorial on hidden Markov models and selected applications in 

speech recognition," in Proceedings of the IEEE, vol. 77, no. 2, pp. 257-286, Feb 
1989. 

 
[3] A. Viterbi, "Error bounds for convolutional codes and an asymptotically optimum 

decoding algorithm," in IEEE Transactions on Information Theory, vol. 13, no. 2, 
pp. 260-269, April 1967. 

 
Other Sources 
 
Wai-Ki Ching, Michael K. Ng. 2006. Markov Chains: Models, Algorithms, and 

Applications. New York, NY: Springer Science+Business Media, Inc. 
 
Robert Gilmore. 2016. Phys 501 Class Notes. Philadelphia, PA: Joseph Tumulty, inc. 
 


