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ABSTRACT

The low-mass X-ray binary 4U1705-44 exhibits long-term semi-periodic variability with a timescale of
several hundred days. The All-Sky Monitor (ASM) aboard the Rossi X-ray Timing Explorer (RXTE)
and the Japanese X-ray All-Sky Monitor (MAXI) aboard the International Space Station together
have continuously observed the source from December 1995 through the present. The combined ASM-
MAXI data provides a continuous time series over fifty times the length of the timescale of interest.
The phase space embedding of the flux versus its first derivative shows a strong resemblance to the
double-welled nonlinear Duffing oscillator. Topological analysis can help us identify fingerprints in the
phase space of a system unique to its equations of motion. If such fingerprints are the same between
two systems, then their equations of motion must be closely related. We therefore found a range
of parameters for which the Duffing oscillator closely follows the time evolution of 4U1705-44 and
from this range chose 6 different numerical Duffing time series. We can extract low-period, unstable
periodic orbits from the 4U1705-44 and numerical Duffing time series and compare their topological
information in phase space, such as their relative rotation rates. Assigning a logical sequence name
to each orbit, the relative rotation rates can be compiled into a unique intertwining matrix. The
numerical Duffing time series and the 4U1705-44 intertwining matrices are identical, providing strong
evidence that they share the same underlying template. The implications of this equivalence suggests
that we can look to the Duffing equation to describe the X-ray binary variability.

Keywords: accretion, accretion disks — stars: individual (4U1705-44) — stars: neutron — X-rays:
stars

1. INTRODUCTION is potentially the mechanism underlying the observed
long periods. Warped accretion discs are also invoked
to explain phenomena observed across many systems in-
cluding high-mass X-ray binaries, cataclysmic variables,
proto-planetary discs and active galactic nuclei.!* One
relevant example is SS433, which has a measured 160-
day precession of the relativistic jets identified to be as-
sociated with precession of the accretion disc.'’

In this study, we consider the low-mass X-ray binary,
4U1705-44, which belongs to the class of _at_oll‘ sources
and exhibits the high-amplitude transitions and non-
periodic long-term variability of interest.! 1** 4U1705-
44 is a neutron star (identified by its Type I bursts) of
approximately 1.4 solar masses (1.1 — 1.6 M,,)'" at a
distance of 7.4kpc. An infrared counterpart has been
observed suggesting a dwarf star companion with a 1-
10hr orbital period.!” The RXTE (Rossi X-ray Timing
Explorer) All Sky Monitor obtained approximately 14
vears of daily monitoring in the 2-20 keV energy range

X-ray binaries exhibit periodicities on multiple time
scales, which give information about the physical
mechanisms at play. High magnetic fields and disc-
magnetosphere interactions create pulsations on time
scales from milliseconds to seconds. Orbital modula-
tions are seen from minutes to tens of days. A num-
ber of X-ray binaries show evidence of long-term peri-
odicities, or superorbital periods, on time-scales much
longer than their orbital periods. Some X-ray binaries
have variability on time-scales of over a hundred days
that are not strictly periodic.” ® For the first time, long
data sets spanning over a decade are available, provid-
ing many cycles to observe this variability. The mech-
anism driving such variability is not well understood.
For low-mass X-ray binaries (LMXBs), it is generally
accepted that the accretion is primarily due to a sub-
stantial accretion disc, which is unstable to irradiation-
driven warping.” The precession of the accretion disc
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of 4U1705-44 with its scan of 80% of the sky every 90
minutes. MAXI (Monitor of All-Sky X-ray Image) on-
board the ISS, in operation since August 2009, scans
the sky every 96 minutes and continues to provide daily
monitoring on 4U1705-44. With MAXI and RXTE com-
bined, we have a 14+ year light curve revealing over 20
cycles of the high amplitude transitions on the order
of hundreds of days. The long-term modulations, which
have also been observed in other LMXBs, are not strictly
periodic. In fact, we propose the long-term variabil-
ity is reminiscent of a nonlinear double—welled oscillator.
that the Duffing oscillator is a candidate to descrlb; the
system. The parameter ranges that best represent the
4U1705-44 light curve are in the chaotic regime of the
Duffing Oscillator. Thus, we use analyses appropriate
for non-linear and chaotic time series.

There are two broad approaches to understanding
chaotic behavior in dynamical systems. The metric ap-
proach generally involves computing the Lyapunov ex-
ponents and various dimensions, such as the Correla-
tion and Minkowski dimensions, giving a tight range
for the fractal dimension. However, these methods re-
quire very large data sets and degrade rapidly with
noise. The topological approach, as introduced by So-
lari & Gilmore (1988),'% 17 involves the identification of
the two mechanisms that are responsible for the cre-
ation of a strange attractor. These two mechanisms,
the stretching and squeezing mechanisms correlating to
the sensitive dependence on initial conditions and recur-
rence phenomenon, respectively, can be characterized by
computing how the unstable periodic orbits are uniquely
organized. In fact, it is possible to determine how the
unstable periodic orbits embedded in the attractor are
organized in terms of a set of integers. Extracting these
integers from a time series is robust against noise and
can be performed for smaller data sets.!> '* !!

Thus, we will follow the topological approach and cal-
culate the unique set of integers, called the relative ro-
tation rates (RRR), for 4U1705-44 and for the Duff-
ing Oscillator.!” By extension of the Birman-Williams
theorem,*2? two chaotic attractors are equivalent if
they are described by branched manifolds that can
be smoothly deformed, one into the other. In other
words, the RRR will remain unchanged under trans-
formations and control-parameter changes. Conversely,
the 4U1705-44 and Duffing Oscillator time series share
the same underlying template if their RRR. are identi-
cal. Identifying the underlying template of 4U1705-44
via the RRR allows for the prediction of the RRR of
all other possible orbits in the time series and provides
a qualitative model for the flow that uniquely gener-
ates the chaotic time series. More significantly, if both
4U1705-44 and Duffing Oscillator time series share the

same underlying template, then we can look to the Duff-
ing Oscillator equation and its template to make quali-
tative predictions of the behavior of 4U1705-44 and infer
possible physical parameters of the system.

The topological analysis procedure that we use can
be summarized as follows. For the 4U1705-44 data, we
will determine the lowest order period of an unstable
periodic orbit via the Close Returns method as used in
Boyd, et. al (1994)* }! and via a dynamical power spec-
tra analysis. Using the close returns method and deter-
mined lowest order period, we will locate and extract
regions in the time series that can be used as surrogates
for the unstable periodic orbits. We will then compute
the topological invariants of Relative Rotation Rates of
all pairs of periodic orbits extracted from the time se-
ries and compile these RRR into a matrix. We will then
perform a nearly identical analysis on a numerically gen-
erated time series from the Duffing Oscillator equations
resulting in the Duffing RRR matrix. Finally, we will
compare the resulting intertwining matrices followed by
a discussion and concluding remarks.'?

2. DATA AND METHODS

The construction of the 4U1705-44 time series con-
sisted of combining RXTE ASM and MAXI data. We
determined the cut-off point of the ASM data to be
where the daily measurements consistently exceeded the
30 range in both the 4U1705-44 data and the same daily
monitoring of the Crab nebula, which for our purposes is
generally considered to be a reliable and stable reference.
MAXI started its observations of 4U1705-44 before this
cut-off point and we could therefore use the overlap to
appropriately scale the MAXI data to the ASM data.
Finally, we normalized the entire combined data set for
comparison to the numerically generated Duffing data.
The resulting time series and phase-space trajectory are
plotted in Fig. 1 and Fig. 2
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Figure 1. 2-20 keV Flux of 4U1705-44, December 1995 to
present, in RXTE Mission Days. The gray curve is the raw
light curve and associated error. The green curve was pro-
duced by applying a high-pass filter and replacing data points
whose errors were more than 50 or were missing with inter-
polated points from the surrounding 3 point mean.
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Figure 2. 2-20 keV Flux of 4U1705-44 against its first deriva-
tive, over the time period of December 1995 to present. The
blue crosses represent the actual data points and the green
curve represents a cubic-spline interpolation for smoothness.

B T = R

A generic torm involving five parameters of the Duffing
equation was used. That is,

& = 0t + B — ax + ycoswt (1)

Solutions were generated on a rolling basis using 4th-
order Runge-Kutta within randomly sampled parameter
ranges. Those solutions with similar frequency of low-
order, low-high amplitude transitions and double-welled
phase space features whereby one well was favored over
the other predominated an increasingly narrow range in
parameter space. These parameters were as follows:

a = [6.4,8.2], nonlinearity of restoring force

B = [4.6,7.5], stiffness of oscillator

d = [0.25,0.48], size of damping

w = [3.6,4.5], driving frequency

v = —[5,7], amplitude of forcing

We chose the same time scaling and sampling rate
as 4U1705-44 and normalized the numerical data for
comparison to the ASM-MAXI data of 4U1705-44. We
chose six different representative Duffing solutions with
lengths ten times that of the 4U1705-44 data. Portions
of the numerical time series and phase-space trajectory
of one of these solutions is displayed in Fig. 3 and Fig. 1.

Dufing Solution with porameters: b=4.99, 1=8.18, d=0.31, g=-6.81, 0=4.01
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Figure 8. Numerical Flux from Duffing Equation, in RXTE
Mission Days. The full time series was produced to be 10
times the length of the 4U1705-44 data set. Only the first
sixth of the time series is plotted here.
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Figure 4. Numerical Flux of Duthing Equation against its
first derivative, in RXTE Mission Days.

3. FINDING THE LOWEST ORDER PERIOD OF
4U1705-44

Since the driving period for 4U1705-44 is unknown,
we use the method of close returns' '', ideal for small,
chaotic data sets to identify nearly closed orbits near
unstable periodic orbits of low period. Fig. /) shows the
close returns plot of i vs. p locating these segments.
A blue point is plotted at (i, p) when, for that time i,
there is a point p days later that is close (we determined
within 10% of the max as "close”) to the value at time
i. Regions of the time series that are close to repeating
itself appear as short horizontal lines. These correlate to
sections in the light, curve in which the time series comes
close enough to an unstable periodic orbit such that it
remains close for at least one period. We extract all such
regions from the light curve and find these lowest order
orbits have periods between 110 and 200 days.
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Figure 5. A blue point is plotted at (i, p) when, for that time
i, there is a point p days later that is close to the value at
time i. The color intensity of a point corresponds directly to
its closeness to the starting point. Regions of the time series
that are close to repeating itself appear as short horizontal
lines, two examples of which are highlighted.

We can corroborate the lowest order period obtained
from the close returns analysis with the dynamic power
spectrum. Fig. ( shows the total power spectra of the
raw light curve of 4U1705-44 plotted against the pe-
riod in the left pane. All of the significant power in the
spectrum is at longer periods, corresponding to low fre-
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quencies, indicative of long-term variability. The right
pane is the dynamic power spectrum showing the power
spectrum of a window size of 4096 days as it evolves over
time. The ends are padded with randomized noise. The
lowest order period varies between 130 and 170 days. We
also see distinct evidence for the appearance of modes
of higher order periods.
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Figure 6. Dynamic Power Spectrum of 4U1705-44, taken
with a window size of 4096 days and padding the ends of the
data set with numerically generated noise about the mean.

Lastly, for final verification, we analyzed the zero-
crossings of 4U1705-44 in order to identify the variation
in periodicity. That is, we calculated all the times and
corresponding derivatives in which the mean-subtracted
light curve crossed zero, distinguishing between an up-
wards trajectory (up-crossing) and a downwards trajec-
tory (down-crossing). This gave us the amount of time
spent in each region of phase space. Time spent below
zero (in a low-state of the light curve) corresponds to
the left-well seen in phase space; similarly, time spent
in the positive, high-state, corresponds to the right-well
in phase space. The average period spent in a well is
250 £ 130 days and 58% of the time spent in the left
(lower) well. Although the error in the average period is
large, this is consistent with there being several tiers of
typical periods, as seen in Fig. 7, across this entire range
as also evidenced by the dynamical power spectrum.

4. EXTRACTING UNSTABLE PERIODIC ORBITS

We have determined a range for the lowest-order pe-
riod in the 4U1705-44 data. We have also produced nu-
merical data of the Duffing Oscillator. Its lowest order
period is simply the driving period, w, from the equa-
tion, which we know to be 140 days. Starting with the

o Iofr”'?t numerically generated Duffing time series, we can eas-

Iy subtract Jow-order, unstable periodic orbits from the
time series by using a modified version of the close re-
turns method. That is, rather than comparing each po-
sition in the time series to every other position ahead, we
can choose a period of 140 days and compare each po-
sition in the time series to each successive period later,
calculate the relative distance and, if this distance falls
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Figure 7. Zero-crossings of 4U1705-44: the upper pane is of
successive up-crossings, the lower pane of successive down-
crossings.

within a small value, €, and evolves within that neigh-
borhood for at least one period, then we have located an
unstable periodic orbit.”" Such a determination is exem-
plified in Fig. Ra for the entire time series for a period-1
orbit. Fig. 8b expands a section in which the distance
is minimal (e.g. within 10% of the maximum) for an
extended amount of time, thus providing us a good can-
didate for a period-1 orbit.

Using the method of close returns on the numerically
generated Duffing solutions, we were able to extract un-
stable periodic orbits up to period-6 by varying the pa-
rameter n in Fig. 3. That is, we were able to locate and
extract 5 period-1, 4 period-2, 3 period-3, 4 period-4, 2
period-5 and 2 period-6 orbits.

Given that we determined the lowest order period in
the 4U1705-44 data to be in the (narrower) range of 130
to 170 days, we chose the Duffing period-1 length of 140
days for optimal comparison. Using the same method,
we thereby reduced the close returns plot in Fig. © to a
one dimensional version as done in the Duffing case. As
a result, we located regions of unstable periodic orbits
and successfully extracted three orbits for each period-1,
-2 and -3.

5. RELATIVE ROTATION RATES

A strange attracter can be characterized by the invari-
ants that it possesses. The traditional classification of a
strange attractor is by the determination of its dynami-
cal and metric invariants, e.g. the Lyapunov exponents
and various dimensions (e.g. Correlation or Minkowski).
The third type of invariant is topological. Where the
first two types are invariant only under coordinate trans-
formations, the topological type is also invariant under
control-parameter changes. For experimental conditions
in which the control parameters experience perturba-
tions the determination of the topological invariants is
appropriate.



Close Returas of numerical Duffing time series, period 1

=

d{x(@ - x(Fn)}. (% max amplitude)
£

bl -u:l'ﬂ A0 {000 100 ; 12000 oo |.6000
i (index of the signal)
(a)
Close Return numerical Duffing time series, period 1
T
o
2% A
=
2
g 5|
5
£
=
=3
=
£
%
el &
. — il . -
s0n 6l i “EEn il i)
i (indes of the signal)
(b)

Figure 8. Relative distances between a point x(i) and

x(i+n), dlz(z) — (¢ + n)], plotted as a function of i, for a
fixed period n. In this example, we are searching for period-
1 orbits, which are of length 140 days; (a) is of the full time
series, (b) is of the segment about 5700 days.

Topological invariants draw dependence on the peri-
odic orbits existing in a strange attractor. The mech-
anisms that drive the behavior of a strange attractor
uniquely organize all the unstable periodic orbits embed-
ded in that strange attractor. The ”stretching” mecha-
nism is correlated to the sensitivity to initial conditions:
nearby points essentially repel each other at an exponen-
tial rate. However, in order for these two points to not
end up at two ends of an infinite spectrum there exists
a mechanism that keeps the entire system bounded in
phase space such that these two points reach a maximum
separation. This latter behavior is associated with the
”squeezing” mechanism. Identifying the organization of
the unstable periodic orbits can be used to identify these
underlying mechanisms and thereby provide us with the
”fingerprints” on which the attractor is built. That is,
the underlying structure described by these mechanisms
is completely responsible for the organization of all pe-
riodic orbits in the flow. We are therefore provided with
predictive capabilities describing the qualitative and ge-
ometric behavior of the attractor.'-

One of the topological invariants introduced by So-
lari and Gilmore, 1988,'" intended to describe period-
ically driven two-dimensional dynamical systems, such
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as nonlinear oscillators, is called the Relative Rotation
Rates (RRR). When a strange attractor has a "hole” in
the middle, as depicted by the Duffing Oscillator and
the 4U1705-44 phase space, RRRs can be determined
for such systems. Generally speaking, RRRs describe
how one periodic orbit rotates around another; or, more
specifically, the average value, per period, of this rota-
tion rate.

The relative rotation rates can be computed only af-
ter the orbits have been embedded in R?." We chose a
differential phase space embedding'!:

(i) - y(t) = {z(3), de(i)/dt, d*z(3)/dt*}
& {z(0), 2(i+1) —z(i - 1), (2)
z(i+1) — 2z(i) + =(i — 1)}

Let A be an orbit of period ps which has intersec-
tions (ay,ag, ..., ap, ) with a Poincaré section ¢ = const,
and similarly for orbit B. The relative rotation rate
R;;(A,B) of A around B is defined as:

1 7{ n - (Ar x dAr)
2TDAPE Ar - Ar

in which we have defined Ar = [zg(t) — zA(t), yB(t) —
ya(t)] is the difference vector between points on the
two orbits, n is the unit vector orthogonal to the plane
spanned by Ar and dAr, and the integral extends over
p4 X pg periods. The initial conditions are the points
a;,b; on the Poincaré section. All of the relative rota-
tion rates for a system can be assembled into a table, or

» [0

Ri;(A,B) = 3)

7intertwining matrix.

An example of the computation of a RRR for a period-
4 orbit against another period-4 orbit in the numeri-
cal Dufling time series is plotted in Fig. 9. We located
the intersection of each extracted periodic orbit with a
Poincaré section. Next, we connected each pair of points
in the two orbits by a directed line segment. This line
segment will evolve in time under the flow and will have
undergone an integer number of full rotations (27 radi-
ans) in the plane perpendicular to the flow in ps X pp
periods. The relative rotation rates can be computed in
four equivalent ways.'" The first is as is defined in Eq. 2.
A second, which is most convenient to show graphically,
is as follows: Whenever Ar?2 = 0 and Ar! > 0, define
a(t):

+1 dAr?/dt >0
_1 dAr/dt <0

o(t) = (4)

Then )
4“’
Ri;(A,B) = R0 r"(@
PAPB o1 <Tpaps

Fig. 9(b) shows each time the difference Ar crosses
the half line Ar?2 = 0, Ar! > 0, whereby the crossing
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Duffing: Differential Phase Space Embedding
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Figure 9. Computation of RRR for two period-4 orbits. (a)
3D phase space embedding and projection of a pair of ex-
tracted unstable periodic orbits of period 4 from the nu-
merical Duffing solutions over a period 4T (just pa), (b)
each time the difference Ar crosses the half line Ar? = 0,
Ar! > 0, the crossing direction is counted positive (o = +1)
if dAr?/dt > 0 and negative if dAr®/dt < 0. Note: the plot
shows this done over a period of 4T (rather than pa X pg).

direction is counted positive (o = +1) if dAr?/dt > 0
and negative if dAr?/dt < 0. For the period-4 compared
against a different period-4, we find the RRR is 3/4.
Following the same procedure through with all ex-
tracted unstable periodic orbits, we collect the RRRs for
both 4U1705-44 and the numerically generated Dufling
time series into their respective intertwining matrices.
Up through period-3 (the longest period extracted from

the 4U1705-44 data) the matrices are identical. If we
can eventually extract a period-4, -5, or -6 orbit from
the 4U1705-44 data, we will then be able to compare
against the full (including all extracted periodic orbits)
Duffing intertwining matrix for verification. To reiter-
ate, an intertwining matrix may be associated with any
periodic flow. Different flows with the same map may
have closely related intertwining matrices. If the ma-
trices are identical the flows may be equivalent. Given
that these matrices are identical, it is therefore possible
that the flows are equivalent. As such, if the RRRs do
agree, then the underlying template of the Duffing os-
cillator can serve as a geometric model for the dynamics
which generate the chaotic time series of the 4U1705-44
system, i.e. the stretching and squeezing mechanisms
and the qualitative behaviors they infer for all future
periodic orbits.

4U1705-44 Relative Rotation Rates

1.1 | 1.1 |13 |21 |22 |31 3.2

xy |zy |y | yyo|yyB| zyza | zyzf
1.1 || O 1 1 1 1 2/3 2/3
1.2 0 1 2/3 2/3
1.3 0 1 1 2/3 2/3
2.1 0 1/2
2.2 0
31 0 2/3
3.2 0

Table 1. Orbits are labeled as (p.n), i.e. the n'* orbit of pe-
riod p; = and y signify the orbit’s presence in each lower- or
upper- well, v signifies symmetric orbits, and «, § asymmet-
ric orbits. Only distinct orbits are included in the matrix.

Duffing Relative Rotation Rates

1.1 (1.1 |15 |21 |22 |31 3.2 5.1 5.2

zy |zy | zv | yyo| yyB | zyza | zyzh
1.1 || O 1 2/3 | 2/3
1.2 0 1 1 2/3 | 2/3
1.5 0 1 1 2/3 | 2/3
2.1 0 1/2(2/3 |2/3 |[4/5 |4/5
2.2 0 2/3 | 2/3 |[4/5 |4/5
3.1 0 2/3 |2/3 |2/3
3.2 0 2/3 | 2/3
5.1 0 2/5
5.2 0

Table 2. RRRs of numerically generated Duffing time series
with the same identifying naming convention of orbits as
4U1705-44 RRRs. Orbits of the same type as in 4U1705-44
are included here, as well as period-5 for illustration.




6. CONCLUSIONS

Exploring the time series of X-ray binary 4U1705-44
is critical to the study of all X-ray binaries because they
all share many of the same global characteristics in their
high-amplitude transitions and non-periodic variability
over the long-term. The mechanism behind this vari-
ability is not well understood. A non-linear oscillator
is a strong candidate to describe these systems. We
have found striking results that beg further analysis: the
low-order driving period is between 130 and 170 days,
which is seen and highlighted in the power spectra, zero-
crossings and close returns analysis of 4U1705-44. Fur-
thermore, the driving frequency (w) of all six Duffing
solutions tend to converge to a range of 3.6 — 4.5, cor-
responding to driving periods in the range of 140 to 175
days. The relative rotation rates analysis strongly sug-
gests that 4U1705-44 and the Duffing equation share the
same underlying template. The next step in our analy-
sis is to complete the intertwining matrices, obtain ad-
ditional verification by computing the linking numbers,
which is closely related to the relative rotation rates,
and computing the intertwining matrices and linking

numbers for the other five numerically generated Dufl-
ing time series as well as from other external computa-
tions of the Duffing oscillator.'™ This all would serve to
verify the template identification of 4U1705-44. Lastly,
it would also be prudent to compare against other
dynamical systems. Already, the intertwining matrix
for another chaotic system, the Belousov-Zhabotinsky
reaction,!! is not identical to 4U1705-44 and differs by
a non-integer (thus, we can predict that the flows are
inequivalent). We will next consider what could be oc-
curring in the 4U1705-44 binary system physically that
creates such a strong relationship to the Duffing equa-
tion. For example, the long-term driving period could
be related to an irradiaion-driven warped accretion disk
that precesses over the long-term of over 100s of days.
Other possibilities, such as precession of the neutron star
spin axis, or a bi-stability in the accretion disk warping
modes will also be investigated.”

Facilities: RXTE(ASM)
Software: Python
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