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1 Introduction
Before Pioneer 10 directly measured the magnetic �eld of Jupiter, the only objects in the solar system known
to have magnetic �elds were the Earth and the Sun.[1] Based on observational evidence, it was expected
that Jupiter had a substantial magnetic �eld. Furthermore, based on the similarity of Saturn with Jupiter,
and similar observations of Saturn's radio emmissions, it was expected that Saturn would also possess
a magnetic �eld. This was observed directly by Pioneer 11.[2] More unexpected was the observation
of Uranus' magnetic �eld, as there was no previously existing observational evidence. Furthermore, the
observations of the magnetic �elds of the ice giants, by Voyager 2, revealed that the magnetic �elds are
substantially o�set from the rotational axes of these planets.[4, 3]

Schematic of the Uranian magnetic �eld.

Planetary magnetic �elds are thought to be created by the dyamo e�ect. Complex motions of electrically
conductive �uids inside a planet induce substantial magnetic �elds. In the case of the Earth, for example,
the magnetic �eld is thought to be created in the iron-rich core.[5] Gas giants may owe their magnetic �elds
to the presence of conductive metallic hydrogen . The least understood of the planets, however, are the ice
giants. There is some computational evidence to suggest that, rather than being produced in their depths,
their mangetic �elds are created in convection in the upper parts of the atmosphere.[9] The equations
describing the dynamo e�ect, in non-dimensional form, are shown below.

�~ Du
~

Dt
=r ��~ + f~+N (r�B~)�B~ (1)

@�~
@t
+r� (�~u~)=0 (2)

@B~
@t

= 1
Rm

r2B~ +r� (u~�B~) (3)

1



r�B~ =0 (4)
@T~
@t

= k
�~
r2T~+ � (5)

In a review of the current state of the understanding of planetary magnetic fields, Stevenson writes
�Dynamo simulations require clever ideas as well as merely brute force improvement of the parameter
regime.�[5] Many mathemtical approaches have been taken to dynamo theory; however, I am particu-
larly interested in applying a weak-coupling expansion to (1)�(5), and investigating the viability of such
an approach.

2 Dimensionless numbers in MHD
Fluid mechanics is known to make use of a large number of dimensionless numbers that characterize the
�ow in question. Magnetohydrodynamics is no exception. One such number, which appears in (3), is the
magnetic Reynolds number, Rm.[7] Note that, in the limit, Rm! 0, (3) has the form of the di�usion
equation. In the limit Rm!1, the magnetic �eld is subject to Alfve�n's frozen-in theorem. As it were,
the magnetic Reynolds number characterizes the ratio of induction of the magnetic �eld by �uid motion.
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A relatively large magnetic reynolds number is required to sustain a dynamo�the Childress limit establishes
this as Rm>�.

Another dimensionless number in MHD is the magnetic Prandtl number, which characterizes the
relative importance of viscocity and magnetic di�usion. Many naturally occuring systems occur at low
magnetic Prandtl number, and so this has been the subject of other studies.[6]
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Also in (1) we �nd the constant N , called the magnetic interaction parameter. This constant, of
course, determines how strongly the �uid motion is coupled to the magnetic forces. At the heart of the

weak-coupling approach is the assumption that N � 1. This requires that jB0j � �0 � Re
�

q
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/L. From these, we can see that N may exist in the weak-coupling regime if, there are either

i. High Reynolds number�i.e. turbulent �ow.

ii. High magnetic Reynolds number. This condition is required for a self-sustaining dynamo.
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3 Weak Coupling Expansion
Previosly, the weak-coupling expansion has been used to study the behavior of viscoelastic �uids, in which the
Navier-Stokes equation contains a term corresponding to the elastic stress in the �uid.[10, 8] By expanding
the equations of motion in terms of the coupling constant we are able to solve the Navier-Stokes, unperturbed
by forces that are not caused by the stresses inside the �uid. This can then be used in the other equations of
motion to calculate the lowest-order term of the elastic stress tensor, which in turn can be used to calculate
the �rst order correction to the velocity �eld, etc. Expanding in terms of N and comparing terms of like
order, we obtain a new ensemble of equations:
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This provides a powerful prescription not only for obtaining numberical solutions to the problem�provided
a weak-coupling regime is physicical�but also provides a semi-analyitical framework for understanding the
creation of planetary magnetic �elds. In certain contexts, it should be possible to �nd solutions to the
Navier-Stokes equation, by construction, and then determine the behavior of the magnetic �eld on that
basis. For example, the velocity �eld in laminar Couette �ow can be found easily.

4 Irrotational �ow in a cylinder

Let's consider a very simple example. In cylindrical coordinates, an irrotational �ow will be represented by
u~0= �̂/r. We will be somewhat unconcerned as to how this �ow can be realized�though, a Couette �ow
should be able to produce this velocity �eld. Again, we will consider the case that Rm� 1; therefore, we
will neglect the di�usive term. In this case, (3) reduces to an, essentially, advective equation. We will also
consider the cylinder to be in�nitely long. In this case, we can not only exploit the azimuthal symmetry,
but also longitudinal symmetry.
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Equation (6), despite e�orts to simplify the problem, is still somewhat untractable. However, we can ask
under what conditions will the magnetic �eld be stable. By allowing the time derivatives of B~0 to be zero,
we �nd that (u~0 �r)B~0=
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These conditions imply that�as we expect in an azimuthally symmetric system�that the radial and lon-
gitudinal components of the magnetic �eld do not depend on �. However, we also have to concede that
@B~0
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, based on the condition that B~0�(� = 0) = B~0�(� = 2�). This, furthermore, implies that B~0
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requirement that B~0 is solenoidal implies that B~0
z
is a function of only r, and B~0� is a function of r and,

possibly, z. We can now ask whether this con�guration is stable. Suppose that we add a small contribution
B~0+ �~ �. This small perturbation evolves in time as
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The eigenvalues of this matrix are all, clearly, ¡1/r2. Because they are negative, this is a stable equilib-
rium. However, this condition is relatively mum on the details about B~0. For example, B~0

z
may be either

positive or negative, or whether it can spontaneously change between the two. However, what is clear is
that this �ow geometry leads to a helically shaped magnetic �eld.

A �rst order correction can be obtained for the velocity �eld, u~1, can be obtained from the equation
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Less interesting�at present, at least�is the solution, compared to the fact that the stresses the �uid is
subjected to is substantially more complicated. The resulting �rst-order correction to the velocity �eld
could contain components that are not directed only in the �̂, which could introduce a correction to the
magnetic �eld that is unstable.

5 Numberical di�culties

Consider another simple example: one-dimensional advection, subject to an initial condition.
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This problem can be solved exactly, using Fourier transforms, to show that q(x; t) = Q(x ¡ v t). If we
approach the problem numberically, to �rst-order, we can update the function q by
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Suppose that Q is a step function at x= 1, and v= 1. This function should maintain a sharp, clean edge
that should �ow down the stream de�ned by v. Speci�cally, the step function should have propagated to
x= 2 at t= 1: However, when we implement this solution, the numberical results is somewhat smoothed
out. I also tried a method that was second order in �x. The edge was perhaps sharper; however, there was
some resulting oscillation following the descent. I would like to spend some time in the future examining
better numberical techniques that might be applied to this problem.
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Numberical solution implementing (9)
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Numberical solution implementing (10)

6 Conclusion

In this paper, I attempted to outline the solution technique of the weak coupling expansion for the dynamo
theory equations. Ultimately, the weak coupling expansion is meant to be a computational tool; however, it
is in principle able to yield semi-analytic results. In the example, I attempted to gain some understanding
of the magnetic �eld that results from a simple irrotational �ow. There are, perhaps, more illustrative
examples that can serve as toy-models for the planetary magnetic �elds that I ultimately want to apply this
to. However, being a computaitonal method, I hope to devote some additional time to �nding a numberical
method of a high order in time and spatial di�erential elements than the naïve �nite-di�erences method I
attempted.
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