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Abstract

In this paper, the Einstein A and B coefficients and their historical derivation are reviewed. In
addition, time-dependent perturbation theory is used as a tool in understanding how electro-
magnetic radiation interacts with atoms, causing transitions of its electrons among different
energy levels. Both spontaneous emission and stimulated emission of radiation are also de-
scribed.

1 Historical Context

‘A Splendid light has dawned on me about the
absorption and emission of radiation.’ In a let-
ter written by Albert Einstein to his friend
Michel Besso in 1916, Einstein recounts his
new insights into a new derivation of Planck’s
radiation law.

He considered a gas of ‘molecules’ in ther-
modynamic equilibrium with electromagnetic
radiation. Let energy levels of the molecules
be denoted by Em and also let the number
of molecules in each energy level be Nm. By
considering two such levels E2 and E1 with
E2 > E1 and the possibility of transitioning
between these levels, Einstein postulated that
the number of transitions, in time dt, for the
higher energy level E2 to the lower state E1

will consist of two components.

• The first component will arise from the
spontaneous jump from E2 to E1. The
number of transitions will be given by the
term A21N2dt. The coefficient A21 is re-
lated to the intrinsic probability of the
jump and does not depend on the radi-
ation density.

• The second component is a result of stim-
ulated emission of radiation. The number
of transitions will be given by B21N2ρdt,
which is proportional to the radiation den-
sity. The presence of this radiation will
also induce jumps in the other direction
(E1 to E2), and the number will be given
by B12N1ρdt, which is again proportional
to the radiation density.

The Aij ’s and Bij ’s are called the Einstein A
and B coefficients.

In equilibrium, the number of transitions
from level 1 to 2 must be the same number
of transitions from level 2 to 1.

N2(A21 +B21ρ) = N1B12ρ (1)

Solving for ρ we get:

ρ =

[
A21
B21

]
[
B12
B21

] [
N2
N1

]
− 1

(2)

Boltzmann told us that the the number of par-
ticles in the Em

th energy level will be propor-
tional to the density of states times the Boltz-
mann factor:

Nm = gme
−Em

kT (3)
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Using this result for N1 and N2 in the previous
result, we get:

ρ =

[
A21
B21

]
[
B12g2

B12g1

]
e

(E1−E2)
kT − 1

(4)

Also from Wien’s displacement we conclude
that E2−E1 = hν. In the limit as T →∞, we
expect ρ to reduce to the Rayleigh-Jean’s law.
If this is the case, then:

A21

B21
=

8πhν3

c3
(5)

This leads to the relationship1:

g2B12 = g1B21 (6)

2 Time-Dependent Perturbation Theory

In order to understand how atoms interact
with an electromagnetic field, we must use
time-dependent perturbation theory as our
tool of choice. Traditionally, the time depen-
dence of the wavefunction is generally associ-

ated with this factor of e−
iEt
h̄ . This means that

for |Ψ|2 (and for other probabilities and expec-
tation values), the time dependence will can-
cel. For transitions in atomic energies, a time
dependence can be placed on the potential of
the system. If the time dependent part of the
Hamiltonian is small, it can be treated as a
perturbation to the system.

Let us consider a system with two unper-
turbed states, ψa and ψ)b, which form an or-
thonormal basis. Any state can be expressed
as a linear combination of these states:

Ψ(0) = caψa + cbψb (7)

1Singh, V. Current Science, Vol. 89, No. 12, 25
December 2005

The normal quantum mechanical treatment
gives us 2 :

Ψ(t) = caψae
− iEat

h̄ + cbψbe
− iEbt

h̄ (8)

Now add the time-dependent perturbation,
Hpert(t). The only difference in the wavefunc-
tion is that the coefficients must be functions
of time.

Ψ(t) = ca(t)ψae
− iEat

h̄ + cb(t)ψbe
− iEbt

h̄ (9)

These new coefficients will be important for us
to obtain since they will tell us how each state
is populated as a function of time. If the sys-
tem is initially in one state, and at some point
later we measure it to be in the other state, a
transition has occurred.

Solving for ca and cb can be done by man-
dating that the wavefunction satisfy the time-
dependent Schrodinger equation:

HΨ = ih̄
∂Ψ

∂t
(10)

Where, H = H0 +Hpert(t). The result we end
up with for our coefficients is:

ċa = − i
h̄
H ′abe

−iω0tcb (11)

ċb = − i
h̄
H ′bae

iω0tca (12)

Where ω0 = Eb−Ea

h̄ , and H ′ij = 〈i|Hpert|j〉.
Typically, H ′aa = H ′bb = 0.

3 Sinusoidal Perturbations

We’ve now seen how the coefficients of a two
state system evolve in time in the presence of a
time-dependent perturbation. For reasons that

2For more detailed calculations through-
out section 2 and 3, see David J. Griffiths,
Introduction to Quantum Mechanics, 2nd ed. (Pearson
Prentice Hall, Upper Saddle River, New Jersey, 2005).
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will become clear, let’s now look at a periodic
time-dependent perturbation of the form:

Hpert(r, t) = V (r) cos(ωt) (13)

And,

H ′ab = Vab cos(ωt) (14)

Where:

Vab = 〈ψa|V |ψb〉 (15)

We would now like to find the probability of
transitioning from state |ψa〉 → |ψb〉. If ini-
tially the system is in state |ψa〉, we will set
ca(0) = 0, and integrate [6] to obtain cb(t).
Then we look at |cb(t)|2 - the transition prob-
ability.

cb(t) ' −
i

h̄
Vba

∫ t

0
cos(ωt′)eiω0t′dt′

cb(t) ' −
iVba
2h̄

∫ t

0

[
ei(ω0+ω)t′ + ei(ω0−ω)t′

]
dt′

= −Vba
2h̄

[
ei(ω0+ω)t − 1

ω0 + ω
+
ei(ω0−ω)t − 1

ω0 − ω

]
(16)

If we look only at driving frequencies around
ω0, then the second term in [10] will dominate3.
Perturbations at other frequencies will cause a
negligible probability of transitioning.

cb(t) ' −i
Vab
h̄

sin
[

(ω0−ω)t
2

]
ω0 − ω

e
i(ω0−ω)t

2 (17)

And finally,

Pa→b(t) = |cb(t)|2 '
|Vab|2

h̄2

sin2
[

(ω0−ω)t
2

]
(ω0 − ω)2

(18)

3Just in case you’re having a hard time seeing where
this is going, when we apply this same method to elec-
tromagnetic radiation, w ∼ 1015s−1, so this turns out
to be a valid simplification.

4 Emission and Absorption of
Radiation

Electromagnetic radiation is composed of mu-
tually perpendicular oscillating electric and
magnetic fields. When considering the inter-
action of an atom and a nearby electromag-
netic wave, we can state that the neutral atom
will respond primarily to the oscillating elec-
tric field. In addition to this, we can approx-
imate the spatial variation of the field to be
zero. This is a result of the atom being much
smaller than the wavelength of the oscillating
field. We can then express the electric field as:

| ~E| = E0 cos(ωt) (19)

Choosing the direction of polarization to be in
the k̂ direction, the perturbation Hamltonian
then becomes:

Hpert = −qE0z cos(ωt) (20)

Where q is actually the electron charge. Why
not the nuclear charge? The nucleus is much
more massive than the electron. We make
the approximation that the nucleus is station-
ary. The off-diagonal terms in the perturbation
Hamiltonian matrix (responsible for the tran-
sition to come) will be:

H ′ab = −q〈ψb|z|ψa〉E0 cos(ωt) (21)

It should also be pointed out that typically, the
wavefunction ψ is an even or odd function of z,
and hence the quantity z|φ|2 (odd - irrespec-
tive of ψ being even or odd) integrates to zero.
This will justify the statement that the diago-
nal elements of the perturbation Hamiltonian,
Hpert, will go to zero.

In addition, p ≡ q〈ψb|z|ψa〉, is the electric
dipole moment, and radiation of the sort given
by [21] is called electric dipole radiation. In
comparing our off diagonal matrix elements
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with the general case for an oscillating pertur-
bation in section 3, we see that:

Vba = −pE0 (22)

If we now think about our atom in a lower
state ψa with polarized monochromatic light
incident on it, there will be some probability
of transitioning to a state ψb. In light of [22],
this probability will be:

Pa→b(t) =

(
|p|E0

h̄

)2 sin2
[

(ω0−ω)t
2

]
(ω0 − ω)2

(23)

For this situation, the atom will be excited to a
higher energy state, and will absorb Eb−Ea =
h̄ω0 worth of energy from the electromagnetic
field. This process is aptly named absorption.

Using the exact same logic, we can run this
whole process in reverse. An atom starts out in
state ψb and electromagnetic radiation is inci-
dent upon it. In this case there are two things
that could happen. If we were considering a
system with greater than two states, there is
a probability that it could again absorb addi-
tional energy from the field, transitioning the
atom to a state say, ψc. But, there is also a
probability of a transition from state ψb back
down to state ψa. It is the latter case we will
consider here. In order to find this probabil-
ity, we must compute Pb→a(t) = |ca(t)|2. Go-
ing through the calculation reveals that it’s the
same probability as the transition from ψa to
ψb.

Pb→a(t) =

(
|p|E0

h̄

)2 sin2
[

(ω0−ω)t
2

]
(ω0 − ω)2

(24)

In this situation the electromagnetic radiation
is said to stimulate the emission of a photon,
that is, the field will gain h̄ω0 worth of en-
ergy. Basically, one photon comes in and two
come out. This result has proven to be very
important. This is the fundamental mecha-
nism behind the laser (light amplification by

stimulated emission of radiation). This ampli-
fication could come from some sort of chain
reaction of a container of atoms all in their
excited state, releasing large amounts of pho-
ton at the same frequency. Also if you think
about it, absorption is in direct competition
with stimulated emission. That same photon
which could cause a transition from state ψb

to state ψa and produces two photons, could
simply be absorbed by an atom in state ψa,
in which case no amplification would be pro-
duced. In order to produce an effective laser,
one must use a method known as population
inversion such that most of the atoms in your
sample are in state ψb.

The last mechanism to discuss is that of
spontaneous emission. This is the spontaneous
transition of an atom in state ψb to ψa which
occurs independently of any applied external
field. If the atom were completely independent
of all outside perturbations however, sponta-
neous emission would not happen. Of course,
one could never achieve a perfectly electromag-
netic field-free space, and so this is why sponta-
neous emission is inevitable given these initial
conditions.

Let us consider our same container of atoms,
Na being in the lower state ψa, and Nb being
in the upper state ψb. The rate of spontaneous
emission will be given by Aba(same as A21 from
previous section), making the number of atoms
transitioning from state ψb will be NbAba. If
we take all processes into account,

dNb

dt
= −NbAba −NbBba(ω0) +NaBab(ω0)

(25)
where ρ(ω0) is the energy density in the field,
evaluated at ω0. If in thermal equilibrium,

dNb

dt
= 0

And solving for ρ(ω0):

ρ(ω0) =
Aba(

Na
Nb

)
Bab −Bba

(26)
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Substituting in for Na and Nb in terms of their
Boltzmann factor,

ρ(ω0) =
Aba

e
h̄ω0
kT Bab −Bba

(27)

By comparing this to Planck’s blackbody for-
mula,

ρ(ω) =
h̄

π2c3

ω3

e
h̄ω
kT − 1

(28)

We must conclude that Bab = Bba, and

Aba =
ω3

0h̄

π2c3
Bba. (29)

This gives us an expression for the spontaneous
emission rate Aba in terms of the stimulated
emission rate Bba. This rate of transition, ex-
pressed in terms of the dipole moment is4,

Bba =
π

3ε0h̄
2 |p|

2 (30)

We can finally re-express the spontaneous
emission rate by combining [29] and [30] to
achieve:

Aba =
ω3

0|p|2

3πε0h̄c3
(31)
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