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Abstract

The end product of low-medium mass stars is the degenerate stellar configuration called a white dwarf. Here
we discuss the transition into this state thermodynamically as well as developing some intuition regarding
the role of quantum mechanics in this process.

I Introduction and Stellar Classification

It is widely believed that the end stage of the low or
intermediate mass star is an extremely dense, highly
underluminous object called a white dwarf. Obser-
vationally, these white dwarfs are abundant (∼ 6%)
in the Milky Way due to a large birthrate of their pro-
genitor stars coupled with a very slow rate of cooling.
Roughly 97% of all stars will meet this fate. Given
no additional mass, the white dwarf will evolve into
a cold black dwarf.

In this paper I hope to introduce a qualitative de-
scription of the transition from a main-sequence star
(classification which aligns hydrogen fusing stars
to a line on the Hertzsprung-Russell Diagram) to a
white dwarf through the help of quantum mechanics.
In addition, I will also discuss possible mechanisms
for the formation of other configurations of exotic
matter more dense than the electron degenerate gas.

II Stellar Pressure and Hydrostatic Equi-
librium

In the field of Stellar Dynamics, we often define the
relation between the pressure exerted by a system
of particles of known composition and its ambient
temperature and density, P=P(ρ,T,X), to be called
the equation of state. Assuming stellar gas to be an
ideal gas, an assumption seemingly made on care-
less grounds, will prove to be acceptable solely due
to the fact that Coulomb interactions of ionized gases

present at such high temperatures are small com-
pared with the kinetic (thermal) energy of the parti-
cles. This assumption implies a mixture of free non-
interacting particles. One may also note that the pres-
sure of a mixture of different species of particles will
be the sum of the pressures exerted by each (this is
where photon pressure (PRad) will come into play).
Following this logic we can express the total stellar
pressure as:

PTot = PGas + PRad = PIon + Pe− + PRad (1)

At Hydrostatic Equilibrium: Pressure Gradient =
Gravitational Pressure.

dP

dR
= −GM

R2
ρ (2)

This is of course assuming a spherically symmetric
distribution of mass.

III Ion Pressure

We start with the equation of state for an ideal ion
gas:

PIon = nIonkT (3)

Where nIon is the number of ions per unit volume
V. To obtain the total number of ions in this unit vol-
ume, we must sum the following relation over all ion
species:

n =
ρ

mH

X

A
(4)
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nIon =
∑
i

ni =
∑
i

ρ

mH

Xi

Ai
(5)

Where mH is the atomic mass unit (by convention -
1
12 of a carbon nucleus 6= proton mass or a hydrogen
atom), X is the mass fraction of a species, and A is
the baryon number of a species. The mean atomic
mass of stellar material µIon and the ideal gas con-
stant are then defined respectively by:

1

µIon
≡

∑
i

Xi

Ai
(6)

R ≡ k

mH
(7)

Finally we get:

PIon =
R

µIon
ρT (8)

IV Electron Pressure

Starting in a similar fashion, the equation of state for
an ideal electron gas is:

Pe− = ne−kT (9)

Where ne− is the number of free electrons per unit
volume V. Here we concentrate our focus on the stel-
lar interior, where at temperatures of 106K, hydro-
gen and helium are completely ionized. The total
number of electrons per unit volume is:

ne− =
∑
i

Zini =
ρ

mH

∑
i

Xi
Zi
Ai

(10)

Where Z is the charge on the nucleus. We then define
the average number of free electrons per nucleon,
µ−1e− , as:

1

µe−
=

∑
i

Xi
Zi
Ai

(11)

Which after some substitution will give us:

ne− =
ρ

µe−mH
(12)

The electron pressure can thus be written as:

Pe− =
R

µe−
ρT (13)

To clarify, our assumptions have been non-
interacting gases and complete ionization. So far, we
have still failed to mention anything regarding the
conditions of stellar interiors such that these effects
cannot always be neglected. At a certain point, quan-
tum mechanical and relativistic effects will enter the
picture.

V Radiation Pressure

The idea of a pressure is generally associated with a
Force
Area . This force can then be thought of as the sum

of massive particles imparting momenta upon the
walls of some container. Although a photon does not
have mass, its momentum is hν. Radiation pressure
is due to the transfer of momentum to gas particles
whenever absorption and scattering of photons oc-
curs within the gas. In Thermodynamic equilibrium
the photon distribution is isotropic and the number of
photons with frequencies in the range (ν, ν + dν) is
given by the blackbody distribution:

n(ν)dν =
8πν2

c3
dν

exp
hν
kT − 1

(14)

We can use the pressure integral to obtain an expres-
sion for the pressure due to radiation:

P =
1

3

∫ ∞
0

νpn(p)dp (15)

PRad =
1

3

∫ ∞
0

c
hν

c
n(ν)dν =

1

3
aT 4 (16)

Where a is the radiation constant:

a =
8π5k4

15c3h3
=

4σ

c
(17)

As stated previously, each collision between a
photon and an atom will excite the atom energeti-
cally, transferring momentum in the direction of the
incoming photon. Inevitably returning to its original
state by photon emission, it recoils in the direction
opposite the initial photon. The direction of these
emitted photons are random and after a long series
of these interactions the random changes in momenta
due to emission cancel out and the net change in the
atom’s momentum is in the direction of the photon.

Putting all pressures together((7),(12) and(15)),
we achieve a total pressure of:

P = (
1

µIon
+

1

µe−
)RρT +

1

3
aT 4 (18)
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VI Evolution of a Low-Medium Mass Star

Throughout a star’s life on the main sequence, the
star constantly battles to maintain stability. The rate
at which stars fuse elements in their cores is very sen-
sitive to temperature (e(

−E
kT

)). If the star were to be
compressed even a little, the core would rise in tem-
perature and the rate of fusion would increase con-
siderably. This increased rate of fusion results in a
higher production of photons (which can take on the
order of 105 years to reach the photosphere) and con-
sequently a higher photon pressure. Given enough
fuel, this self-sustaining process will continue for the
vast majority of the star’s life.

Considering the topic at hand we focus our atten-
tion to those stars we believe will end up as white
dwarfs: 0.8M�-8M�. Stars with insufficient mass
will never reach a core temperature and density high
enough to begin the fusion of hydrogen. Stars in ex-
cess of roughly 8M� will eventually produce cores
which exceed the Chandrasekhar limit and will result
in a supernova leaving behind a neutron star or black
hole remnant.

Once the hydrogen in the core has been exhausted,
the star undergoes contraction due to lack of energy
production in the core. It then shrinks in radius, heat-
ing up the core to higher and higher temperatures. At
roughly 108K the core begins to fuse helium into
carbon and oxygen through what is known as the
triple-alpha process. This new production of energy
will temporarily re-stabilize the star. This phase of
stable helium burning is significantly shorter than the
main-sequence phase of hydrogen burning. This is
essentially due to two reasons:

• The fusion of helium into carbon and oxygen
provides roughly 1

10 the energy per unit mass
supplied by hydrogen burning.

• The stellar luminosity is higher by more than
an order of magnitude compared with the main-
sequence luminosity of the same star.

Inevitably, the Helium fuel source will run out as
well, causing another phase of contraction as well
as an increase in temperature in the core. This time
the remaining hydrogen in the shell outside of the
core will proceed to burn, separating the core from
its remaining envelope (this is the planetary nebula).

Figure 1: Hydrostatic Equilibrium

Since the core is now completely devoid of an energy
source, it begins its final descent into the white dwarf
stage.

VII Electron Degeneracy Pressure

The final collapse of the stellar core is halted by
the electron degeneracy pressure (Fig.1), an applica-
tion of the Pauli Exclusion Principle. Since electrons
are fermions, no two can occupy identical quantum
states. the electrons are forced into higher and higher
energy levels causing them to be relativistic. Even at
zero temperature, there exists a non-zero energy due
to these relativistic electrons. This is referred to as
the Fermi Energy.

Since an election can have two spin states (+1
2 ,−

1
2 )

each location in phase space can have at most two
electrons. Complete degeneracy occurs when elec-
trons are forced to occupy all available momentum
states. Applying the Heisenberg and Pauli Princi-
ples to a completely degenerate isotropic electron gas
yields the momentum distribution (number of elec-
trons with momenta in the interval (p, p + dp) per
unit volume):

ne−(p)dp =
2

∆V
(19)
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ne−(p)dp =
2

h3
4πp2dp (20)

After a similar process, we achieve an electron de-
generacy pressure of:

Pe−,deg =
8π

15me−h
3
p50 (21)

Pe−,deg =
h2

20me−
(
3

π
)
2
3

1

(mH)
5
3

(
ρ

µe−
)
5
3 (22)

Where p0 is the maximal momentum:

p0 = (
3h3ne

8π
)
1
3 (23)

Figure 2: An Infinite Square Well of Length L

Let us now consider visually three electrons in a
1-D square well (Fig. 2). Shown here are the wave-
functions of these electrons in the ground state.

mev = p =
h

λ
(24)

E =
p21

2me
+

p22
2me

+
p23

2me
(25)

E =
h2

2me
(

1

(2L)2
+

1

(2L)2
+

1

L2
) =

3h2

4meL2
(26)

As the length of our box shrinks in size, the energy
of the particles will increase:

P ∝ |dE
dL
| = 3h2

2meL3
(27)

In this case we are doing work against degeneracy
pressure.

According to the Heisenberg Uncertainty Prin-
ciple as we restrict the location of these electrons
by decreasing the size of the box, the uncertainty in
their momentum will increase.

∆V∆3p ≥ h3 (28)

Eventually as the density becomes sufficiently high
the range of momenta exceed the range of momenta
corresponding to the gas temperature. Once this oc-
curs, equation (28) is minimized to a strict equality.
This marks the level at which quantum mechanics
must be considered to be of equal importance to clas-
sical thermodynamics.

White dwarfs differ from main-sequence stars in
another very important way. They are considered to
be highly under-luminous. Judged with reference to
other stars of comparable mass, they exhibit very low
average luminosities. This clearly has mostly to do
with a lack of nucleosynthesis, although it may be
partly due to another characteristic of the degener-
ate gas it is composed of. A degenerate electron gas
behaves much like a metal, conducting heat very ef-
ficiently. One known consequence of this will be a
nearly uniform internal temperature - the tempera-
ture gradient is very small.

dT

dr
= − 3

4ac

κρ

T 3

F

4πr2
(29)

This is the radiative transfer equation, where a is
the radiation constant, F ≡ Luminosity, F

4πr2
≡

Flux, and:
κ = κ0ρ

aT b (30)

VIII Further Degeneracy

Sufficiently dense matter containing protons will
also experience proton degeneracy pressure. Pro-
tons confined to a small enough region will have
large uncertainties in their momenta. Due to a much
larger mass than the electron, proton velocities will
be smaller, representing only a small correction to
the equations of state of an electron degenerate gas.

The equations governing electron degeneracy
show us that a maximum mass for a non-rotating

4



white dwarf exists. This mass is the Chandrasekhar
limit - approximately 1.4M�. Although seemingly
in the last phase of their lives, carbon-oxygen white
dwarfs are capable of further fusion reactions when
part of a binary system with a red giant. If the white
dwarf accretes mass from its companion, its core
temperature will reach the ignition temperature re-
quired for carbon fusion. The sudden initiation of nu-
clear fusion causes a runaway reaction causing what
is known as a supernova (Type Ia). Once exceeding
the mass limit, gravity overcomes the electron degen-
eracy pressure and begins to collapse. Depending on
how much mass the white dwarf accreted in the pro-
cess, the end product is a neutron star or a black hole.
Not all neutron stars remain in isolation. In dense
stellar regions such as globular clusters, neutron stars
are able to capture a companion. Through a mass ac-
cretion process (as with the white dwarf binary) the
neutron star can transition to a black hole.

In either case, further degeneracy pressures be-
come more important than that of the electron. In
the case of a neutron star, gravitational pressure is
counteracted by neutron degeneracy pressure. As the
density increases the Fermi Energy of the electrons
will increase to a point where it is energetically fa-
vorable for them to combine with protons to produce
neutrons. This occurs through an inverse beta-decay
process.

Similarly, for neutron stars there exists some up-
per limit to the mass as well, called the Tolman-
Oppenheimer-Volkoff limit. Any more massive than
this and we now move into the realm of quark stars
(composed of, you guessed it, degenerate quark gas -
if you can even call it that), and finally into the realm
of black holes. Solving for this final limit requires
the use of General Relativity, and is most commonly
displayed as the Schwarzschild radius:

rs =
2GM(r)

c2
(31)

The Schwarzschild radius is a characteristic radius
which is associated with every massive body. It de-
scribes the volume at which the object must be fully
contained in such that there exists no known degen-
eracy pressure to counteract its self-gravity. Essen-
tially it describes a singularity: a point mass of in-
finitely large density.

IX Conclusion

In this paper we have discussed hydrostatic equilib-
rium by piecing together the various components of
pressure of a main-sequence star. We then devel-
oped the sequence of processes through which low-
medium mass stars transition into degenerate matter
by making use of the Pauli Exclusion Principle and
the Heisenberg Uncertainty Principle. We have also
made the distinction as to where quantum mechan-
ics cannot be ignored in stellar calculations. Lastly,
a qualitative description has been provided regard-
ing the transition to other degenerate configurations
arising from white dwarf and neutron star binary ac-
cretion.
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