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1. Introduction 

The Pauli exclusion principle is the source of electron degeneracy.  Additional electrons 
to a certain volume cause the already existing electrons to increase their energy.  This 
extra energy in turn translates into pressure, brought about by the compression of the 
initial volume.  Electron degeneracy is responsible for the existence of white dwarfs. 

A sea of electrons exists in metals.  The electrons feel the force of the ions in the metal.  
The electron-electron interactions are negligible.  But the electrons themselves behave 
as if they were a liquid.  The quasi-particles are described by the Fermi-Dirac statistics.  
A system of conduction electrons can be thought of as a Fermi liquid.   

If we assume that the potential of the metal lattice is the same everywhere, the Fermi 
liquid of conduction electrons is isotropic.  The distribution function of the quasi particles 
is the Fermi function: 

𝑓𝑓(𝐸𝐸) =
1

(𝑒𝑒
𝐸𝐸− 𝛾𝛾𝛾𝛾
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E is the quasi-particle energy.  𝛾𝛾 is the chemical potential and T is the temperature 
expressed in energy units.   

For  T=0, f = 1 if E < 𝛾𝛾 

                f =0 if E > 𝛾𝛾 

 𝛾𝛾(0)  is called the Fermi energy 

 

The radius of the Fermi sphere is: 

 

𝑁𝑁 =  
2𝑉𝑉
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N:  number of quasi particles, 

V: occupied volume 

𝑝𝑝𝐹𝐹: radius of the Fermi sphere  

 

At absolute zero, all orbitals are occupied by the quasi particles.  Their momenta are 
less than the Fermi momentum 𝑝𝑝𝐹𝐹 .  The states outside of the Fermi sphere do not 
contain any quasi particles.  At higher temperatures, the states are built by moving the 
quasi particles from inside the sphere to outside.  The radius of the Fermi sphere 
remains constant when the we take the interactions between the quasi particles into 
account.  But the Fermi energy shifts. 

If we were to introduce a quasi particle that has quasi momentum p into the electron 
liquid  at absolute temperature, the probability of finding the particle would go as: 

𝑒𝑒
− 𝑡𝑡
𝜏𝜏𝑝𝑝  

where, 

𝜏𝜏𝑝𝑝 =
𝑎𝑎
ℏ𝛾𝛾

(𝐸𝐸(𝒑𝒑) −  𝛾𝛾)2 

with 𝑎𝑎 being of order of unity.  

The decay comes from an imaginary part of the quasi particle energy. 

The quasi particles are more or less stable when their energies approach the Fermi 
energy.  Band structure and experiments allow us to learn about the different properties 
of the Fermi surface of metals.  Certain values of the quasi momentum correspond to 
energy minima and maxima. 

𝐸𝐸(𝒑𝒑) =  𝐸𝐸(𝒑𝒑0) + (
1
𝑚𝑚

 )𝒑𝒑=𝒑𝒑0
𝛼𝛼𝛼𝛼  ( 𝑝𝑝𝛼𝛼 −  𝑝𝑝0𝛼𝛼  )( 𝑝𝑝𝛼𝛼 −  𝑝𝑝0𝛼𝛼   ) 

Close to the points of extrema, the constant energy surfaces are ellipsoids.  For these 
energy surfaces, close to a minimum energy point , the surface surrounds a region in 
which the energy has values  that are less than the surface. 

 

 

 



2. Local geometry 

The observables are impacted by the shape of the Fermi surfaces.  As far as high 
frequency of the electromagnetic or ultrasonic perturbation is concerned, the 
relationship between observables and Fermi surface shape becomes critical.  In these 
conditions of high-frequency, the electrons whose motion is in synchronism with the 
perturbation take part in the absorption of the energy.  The quasi particles are located 
on the effective parts of the Fermi surface for which 

ω = qv 

with, 

ω : perturbation frequency 

q: perturbation wave vector 

v: electron velocity 

 

if the electrons are moving in a transverse way relative to direction of motion of the 
wave, the above equation is relevant in the case of sound waves and electromagnetic 
waves. 

The local geometry of the Fermi surface has a Gaussian curvature.  The points of a 
surface that have a Gaussian curvature which is finite fall into three different categories.  
They may either be elliptic, hyperbolic or parabolic.  These categories are the positive, 
negative, or zero values of the second differential form at the point of interest.  For the 
points that are parabolic, the Gaussian curvature of the surface approaches zero; and 
so does the differential form mentioned above. 

When the curvature is equal to zero, the points can be found on lines that separate the 
hyperbolic parts and the elliptic parts of the surface.  These lines are present in most 
metals.  The reason why the lines of zero curvature affect the observables is that the 
electron density of states in their neighborhood is enhanced.  Below is the expression 
for the electron density of state on the Fermi surface: 

𝑁𝑁𝛾𝛾 =
𝑉𝑉

(2𝜋𝜋ℏ)3 �
𝑑𝑑𝑑𝑑
𝑣𝑣

 

With dS being the element of the surface area.  The integration is over the entire Fermi 
surface.  Instead of carrying this integration as it presently is, it is possible to turn the 
integral into one over the angles that define the normal to the Fermi surface.  
Calculations lead to: 



𝑑𝑑𝑑𝑑 =  𝑅𝑅1𝑅𝑅2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠 

If we define the quantity on the right hand side of the expression above as 𝑑𝑑𝑑𝑑 𝐾𝐾(𝑠𝑠,𝑠𝑠)� , 

then the integral becomes, 

𝑁𝑁𝛾𝛾 =
𝑉𝑉

(2𝜋𝜋ℏ)3 �
𝑑𝑑𝑑𝑑

𝐾𝐾(𝑠𝑠,𝑠𝑠)
 

The above equation shows that the lines of zero curvature contribute more to the 
electron density of states than all other lines.  This means that, when the curvature of 
the Fermi surface approaches zero at a point, this gives an enhancement of the 
electrons corresponding to the vicinity of the point on the Fermi surface. 

Very close to a point where the curvature is zero, the shape of the Fermi surface is that 
of a cylinder or a plane.  It becomes a cylinder when one principal radius tends to infinity.  
It becomes a plane when the two radii of curvature approach infinity. 

 

3. Attenuation of ultrasounds 

An ultrasound distorts the lattice structure of metals.  This phenomenon is the origin of 
electric fields that will have an effect on the electrons.  The electronic spectrum also 
changes as a result.  The electron energy consequently changes by the amount 

 

𝛥𝛥𝐸𝐸 =  𝛬𝛬𝑠𝑠𝑖𝑖 (𝒓𝒓,𝒑𝒑) 𝑢𝑢𝑠𝑠𝑖𝑖 (𝒓𝒓, 𝑡𝑡). 

Where, 𝑢𝑢𝑠𝑠𝑖𝑖  is the strain tensor 

 

𝑢𝑢𝑠𝑠𝑖𝑖 =  
1
2

 (
𝜕𝜕𝑢𝑢𝑠𝑠
𝜕𝜕𝑥𝑥𝑖𝑖

+   
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑠𝑠

 ) 

u is the vector of the displacement of the lattice.  𝛬𝛬𝑠𝑠𝑖𝑖  is the deformation potential. 

An electron and an ultrasound wave interact by means of the following equation: 

 

𝑑𝑑𝒑𝒑
𝑑𝑑𝑡𝑡

=  −  
𝜕𝜕
𝜕𝜕𝒓𝒓

 𝐸𝐸 + 𝑒𝑒𝑬𝑬 



The first term represents the deformation of the electron spectra.  It is proportional to 
the deformation potential 𝛬𝛬𝑠𝑠𝑖𝑖 .  The second term represents the effect of the electric field 
on the electron. 

The quasi-particles interact with other quasi-particles.  We can think of the Fermi-liquid 
interaction as a self-consistent field.  This field originates from the fact that the electrons 
have an effect on an individual electron.  The energy of the quasi particles changes 
when the state of other quasi particles changes. 

 

4. Magnetic Field and Cyclotron Resonance and Concluding Remarks 

Even though no conclusive explanation has yet been found, it is thought that the 
propagation of the cyclotron wave of the Fermi liquid could be responsible for the 
resonance peaks in the case of potassium.  As far as the specular reflection of electrons 
is concerned, we notice a very weak singular resonance feature.  We have also come to 
know that the presence of lines of anomalous curvature on the Fermi surface has an 
effect on the anomalous skin effect characteristics.  As a result, the cyclotron resonance 
can be increased. 
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