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Abstract

Quantum dots in semiconductor systems can be used to increase electron excitation

in crystals by introducing intermediate bands betwen the main valence and conduction

bands. Using the method of transfer matrices, we investigate how an electron inter-

acts with a spherically symmetric potential well boundary. This result then can be

generalized by creating a periodic lattice of similar potential wells.

1 Introduction

In recent years there has been a large push in the photovoltaic community to explore

and incorporate quantum dots in p-n junction systems [12]. Normal p-n junction sys-

tems are formed by growing a semiconductor doped with p-material (materials that

donate holes to the bulk system, or in other words accept electrons) on top of a semi-

conductor doped with n-material (materials that donate electrons to the bulk system).

This sets up an electron donation gradient, resulting in electron/hole diffusion force
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and a net electric field across the depletion zone [2]. A simple p-n junction will broaden

the valence and conduction bands within the semiconductor device by adding levels for

holes and electrons. This can be seen in Figure 1 [5].

Figure 1: This figure shows the broadening of the valence and conduction bands due to
extra states donated by the doped semiconductors. The extra hole states are donated by
the p-doped semiconductor region, while the extra electrons are donated by the n-doped
semiconductor region.[7]

Quantum dots (QD) are small nearly one dimensional structures within crystals

that alter the properties of the bulk crystal [8]. These QD structures can be made

by doping the semiconductor with a separate material, or by deforming the already

present semiconductor lattice to create tiny quantum wells [10] . QDs are incredibly

advantageous to use in semiconductor systems since they are quite tunable. Properties

of the dots highly depend on their size, and obviously upon their chemical make up.

Figure 2: This figure shows how a significantly energetic photon can excite an electron from
the valence band into the conduction band. If the photon does not have the energy equivalent
to the band gap energy, the electron will not excite into the conduction band.[2]
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The addition of QD systems in a semiconductor can also create intermediate bands

between the main valence and conduction bands [11]. When a significantly energized

photon is absorbed by a valence electron, it can jump the band gap. This is shown in

Figure 2. But if the photon does not have energy equivalent or greater than that of

the band gap, the electron will not be displaced out of the valence band. It is therefore

beneficial to have intermediate bands between the valence band and conduction band

so that less energetic photons can excite electrons out of the valence band, eventually

ending up into the main conduction band [2]. Figure 3 shows how one can arrange

intermediate bands much like ladder rungs up to the conduction band.

Figure 3: This figure shows how intermediate bands can be formed to facilitate excitation
of electrons out of the valence band [2].

2 Theory

We begin by considering a three dimensional spherical potential well contained in

another medium. This serves to simulate the quantum dot in our semiconductor. The

sphere has radius a and is assumed to have a potential of zero. We also assume a three

dimensional wave incident on our barrier. Because of spherical symmetry, we can reduce

our problem down to only the radial component, as we assume our wavefunction can

3



be separated into independent variables. We look for a solution to the radial portion

of the spherical Schrödinger equation,

[
d2

dr2
+ k2 − l(l + 1)

r2
]ψ(r) = 0 (1)

These solutions are linear combinations of the spherical Bessel functions, jl and nl, but

neither describe a traveling wave. For this situation we need a function in the vein of

e±ikr that we used in the one dimensional problem [1]. We can look to the spherical

Hankel functions, also known as Bessel functions of the third to do this job,

h
(1)
l (z) ≡ jl(z) + inl(z) h

(2)
l (z) ≡ jl(z)− inl(z) (2)

If we assume, like we always do, that ψ(r) is made up of linearly independent

solutions, as such,

ψ(r) = Aφ(r) +Bχ(r) (3)

then we can represent outgoing and incoming waves by these independent solutions,

where

φ(r) = h
(1)
l (kr) χ(r) = h

(2)
l (kr) (4)

Now we look at the spherical barrier. We must not only equate the wavefunction

describing the inner part of the sphere with the wavefunction describing the outer part

of the sphere at r = a, but we must also equate the first derivative of each wavefunction

(inside and out) at the surface of the sphere.
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ψin(a) = ψout(a) ψ′in(a) = ψ′out(a) (5)

We can construct these equalities in a convenient matrix form,

φin χin

φ′in χ′in


Ain

Bin

 =

φout χout

φ′out χ′out


Aout

Bout

 (6)

Let us now relabel our matrices, for convenience, as such:

Mi(a) =

φi χi

φ′i χ′i

 Ψi =

Ai

Bi

 (7)

This allows us to rewrite equation (6) as

Min(a)Ψin = Mout(a)Ψout (8)

By rearranging our matrices, we can solve for the outer coefficients, Aout and Bout,

Ψout = M−1
out(a)Min(a)Ψin (9)

Now we have our transfer matrix M−1
out(a)Min(a) which we can multiply and expand

as such:

Γ = M−1
out(a)Min(a) =

1

φoutχ′out − φ′outχout

φinχ′out − φ′inχout χinχ′out − χ′inχout

φoutφ
′
in − φ′outφin φoutχ

′
in − φ′outχin


(10)

We can analytically express each term in our transfer matrix by taking the appropriate
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derivatives, noting that

∂

∂z
(h

(1)
l (z)) =

1

2
(h

(1)
l−1(z)−

h
(1)
l (z) + zh

(1)
l+1(z)

z
) (11)

and likewise for h
(2)
l , and that with each derivative, a 1

m∗ drops out, where m∗ is the

effective electron mass. Our transfer matrix, Γ, then can be expanded as

Γ =
ia2kout

2m∗(2l + 1)

n11 n12

n21 n22

 (12)

where the elements of the matrix are

n11 = kouth
(1)
l (akin)[lh

(2)
l−1(akout)−(l+1)h

(2)
l+1(akout)]−kinh

(2)
l (akout)[lh

(1)
l−1(akin)−(l+1)h

(1)
l+1(akin)]

(13a)

n12 = kouth
(2)
l (akin)[lh

(2)
l−1(akout)−(l+1)h

(2)
l+1(akout)]−kinh

(2)
l (akout)[lh

(2)
l−1(akin)−(l+1)h

(2)
l+1(akin)]

(13b)

n21 = −kouth(1)l (akin)[lh
(1)
l−1(akout)−(l+1)h

(1)
l+1(akout)]+kinh

(1)
l (akout)[lh

(1)
l−1(akin)−(l+1)h

(1)
l+1(akin)]

(13c)

n22 = −kouth(2)l (akin)[lh
(1)
l−1(akout)−(l+1)h

(1)
l+1(akout)]+kinh

(1)
l (akout)[lh

(2)
l−1(akin)−(l+1)h

(2)
l+1(akin)]

(13d)

While this looks extremely messy, we must keep in mind that we’re looking for ground-

state energy values [9]. This sets l = 0, which causes half of our terms in equations

(13a-d) to disappear. The resulting matrix is much more manageable. Before we go

through the trouble of rewritting this transfer matrix, let us touch on how we will go

about finding our transmission probability. If we have a transfer matrix of a system,

we can obtain the transmission amplitude, t, by setting our transmission and reflection
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coefficients, Ain, Bin, etc. as such

1

r

 = Γ

t

0

 (14)

By doing so, we have assumed that there is only a traveling wave coming from within

the sphere. There is no wave traveling from outside hitting the barrier from the other

direction. Thus our inner-to-outer wave can only transmit, or reflect. This then allows

us to find our transfer probability, T , by

T =
1

|t|2
(15)

where

t = Γ11 = n11 (16)

From this probability we can begin to look at transmission energy states. This for-

mulation will provide peaks at singular energy values. If we were to generalize this

mechanism though, we could simulate a periodic lattice of these quantum dot-like well

regions. Each well we add, we split the transmission peaks accordingly. Thus, if we add

n wells, we’ll split the energy spectrum n times, resulting in a band structure rather

than a peak spectrum.

Generalizing our formulation of the transfer matrix is fairly easy due to our existing

notation. If we had n boundaries (it is important to note that we must account for every

boundary encountered, not just each region or well), then we would have n transfer

matrices describing each boundary interaction. To obtain the resulting energy band

spectrum, we can express the n interactions as

1

r

 = Γ1Γ2Γ3...Γn

t

0

 (17)

7



where the indices 1,2,3,...,n, are the order of the boundaries the incoming wave en-

counters. In this notation it becomes quite easy to deal with multiple barriers. Doing

so should make modeling the band structure of a semiconductor crystal doped with

quantum dot-like wells fairly straight forward.

3 Future Work

The next step in our model is to tune the intrinsic values such that intermediate bands

appear in our semiconductor system. Beyond that we would also like to introduce

excitons into the model. Excitons, electrons excited from the valence band into the

conduction band, also leave behind a hole in the valence band. These two particles (it is

convenient to approximate the hole as a particle) are then bound by the Coulomb force.

We can, in a way, treat this electron-hole system as a quasi-particle in our crystal [6].

By including this into our model, we could begin to effectively predict photocurrents

from QD doped photovoltaics.

4 Conclusion

Quantum dots can be formed through many different methods, and through control

over their size and composition can have many different properties. We begin a formu-

lation of the energy states that can transmit out of the quantum dots in our system.

By approximating the dots as spherically symmetric potentials and the electrons as

incoming waves. Once an appropriate transfer matrix is constructed, we can generalize

the system as a periodic lattice of quantum wells. This splits the transmission energy

peaks into a energy band spectrum. Further work can be done to generalize and tune

this model. Using this technique could help predict the structure and composition of

better photovoltaic cells.
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