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The Kronig-Penney model is typically used to compute the band structure and bound states
of a periodic crystal. While the model allows analytical solutions, it does so by simplifying
the potential to a periodic square potential. We present a method of using transfer matrices to
compute energy bands in a 1-Dimensional lattice. This method does not involve the simplifica-
tion required by the Kronig-Penney model and has the advantage of being able to model ’real’
potentials.

I. Introduction

Solid-state systems are inherently quantum mechanical in
nature. Despite their ubiquitousness, only a small number of
quantum mechanical problems are analytically tractable. Be-
cause of this, it is common to use simplifications and pertur-
bative approaches when solving complex problems. Kronig-
Penney model is an example of such a simplified approach to
solving a quantum mechanical problem. The model replaces
the lattice with a series of equidistant square well potentials
or delta functions[1]. Square wells and delta function po-
tentials have known analytical solutions. Hence, by apply-
ing this model and applying Bloch functions, it is possible
to compute the band structure and the density of states of a
periodic lattice[2]. Potentials encountered in nature rarely
take the form of square wells or delta functions. This is a
shortcoming of the model.

We propose to overcome this shortcoming by using an al-
ternative approach of calculating the band structure and den-
sity of states. The technique, which involves the use of trans-
fer matrices solves for the potential piece by piece. First,
we shall develop the technique for a square well potential
as described in ref [3]. We will later discuss how the tech-
nique can be used to model potentials other than square wells
and finally present results of applying the technique to a l-
dimensional lattice with a two atom unit cell.

II. A Matrix Approach to Solving
Piecewise Potentials

Piecewise potentials can be tedious to solve analytically.
However, given the repetetive nature of the process, comput-
ers can be utilized to solve these with ease. Representing the
problem in terms of matrices simplifies computer representa-
tion of the problem. The following section discusses a matrix
based approach to solving piecewise potentials.

Matrix Representation of a Single Well Problem

Consider a series of potential wells. The general form of
the wave function is given by,

Φ(x) = A jΦ1(x) + B jΦ2(x) (1)

with Φ1and Φ2 representing the solution to the time inde-
pendent Schrödinger equation in region j. Note that the exact
form of Φ1and Φ2 depends on the relation between E and V.
For E > V and E < V, the solutions are in the form of plane
waves.

The relation between the coefficients A j and B j can be
expressed in terms of matrix notation. We will start by con-
sidering a potential consisting of just one square well. The
relation between the left hand side of the well and the right
hand side of the well, which we shall denote as regions 1 and
2 respectively, are given by:[

A1
B1

]
= T12

[
A2
B2

]
(2)

ref [3]

T12is the transfer matrix relating the two sides of the po-
tential. It is given by:

T12 = E−1(V1; a1)K−1(V1)K(V2)E(V2; a2) (3)

where,

E(V, x) =



[
eikx 0
0 e−ikx

]
, E > V[

1 x
0 1

]
, E = V[

e−κx 0
0 eκx

]
, E < V

(4)
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K(V) =



[
1 1

+ik −ik

]
, E > V[

1 0
0 1

]
, E = V[

1 1
−κ +κ

]
, E < V

(5)

ref [3]

with k =
√

2m(E − V)/~2 and κ =
√

2m(V − E)/~2. Note
that the above is simply the solutions to the time independent
Schrödinger equation expressed in matrix form.

Matrix Representation of Multiple Wells
For multiple potential wells, each well can be treated as

a new problem. The problem can be solved piece by piece
from left to right. Matrix representation can make the pro-
cess of solving mutiple well problems elegantly simple. It
is possible to write down a general expression for a transfer
matrix T j, j+1 which relates region j to region j+1:

T j, j+1 = E−1(V j; a j)K−1(V j)K(V j+1)E(V j+1; a j) (6)

ref [3]

A transfer matrix for the whole set of potetials can be
generated by multiplying transfer matrices representing each
piece of the potential. Multiplication of the transfer matrices
leads to the following expression:[

A
′

L
B
′

L

]
= TL,R ·

[
A
′

R
B
′

R

]
(7)

ref [3]

TL,R is the transfer matrix relating the asymptotic left hand
and the asymptotic right hand regions.It is given by:

TL,R = K−1(VL) · M · K(VR) (8)

ref [3]

A
′

Land B
′

Lrepresent amplitudes in the asymptotic left hand
reigion. They have been formed by absorbing E(VL; a0) into
the amplitudes AL and BL. Similarly A

′

Rand B
′

Rare ampli-
tudes representing the asymptotic right hand region. They
have been formed by absorbing E(VR; an) into the ampli-
tudes AR and BR. Matrices K−1(VL) and K(VR) represent the
asymptotic left hand and right hand regions.

For a potential with n pieces with the boundaries of the
pieces occuring at a j:

M =

n∏
j=1

M(V j,δ j) (9)

M(V j, δ j) = K(V j)E(V j; a j−1)E−1(V j; a j)K−1(V j) (10)

ref [3]

With δ j = a j − a j−1. Thus, we have demonstrated a tech-
nique of solving the time independent Schrödinger equation
across a piecewise potential comprising of square wells.

Modeling Real Potentials

The earlier section dealt exclusively with square wel po-
tentials. While using the transfer matrix approach has made
computation simple, the technique was developed for square
well potentials. However, the technique can be extended to
solve other potentials. It is possible to represent smooth po-
tentials such as Gaussians, in terms of a series of square well
potentials. The number of wells used to represent the poten-
tial can be increased until the desired smoothness is achieved.
This idea will be revisited in the results section.

Periodic Boundary Conditions

Since our interest lies in lattices, we now apply periodic
boundary conditions to the above formulation. We will con-
sider a periodic potential with N potentials. As discussed
before, the transfer matrix will relate the amplitudes of two
consecutive pieces: (

A
B

)
i
= T

(
A
B

)
i+1

(11)

Since the potential consists of N pieces,(
A
B

)
i
= T N

(
A
B

)
i+N

(12)

Periodicity requires that the wavefunction at the ith piece
and (N+i)th have to match. Thus:(

A
B

)
i
=

(
A
B

)
i+N

(13)

which implies that,

T N = I2 (14)

ref [3]

Where I2 is the 2x2 unit matrix. By applying the similiar-
ity transformation mentioned in ref [3] (pp. 168) and choss-
ing matrix S to diagonalize T, eigenvalues can be computed
in terms of a single unit cell transfer matrix. The eigenvalue
equation is then given by:

det
[(

t11 t12
t21 t22

)
− λI2

]
= 0 (15)

simplification yields:

λ± =
1
2

tr(T ) ± i

√
1 − (

1
2

tr(T ))2 (16)



COMPUTING THE DENSITY OF STATES AND ENERGY BANDS OF A 1-DIMENSIONAL LATTICE USING TRANSFER MATRICES 3

When | 1
2 tr(T )|≤ 1 define angle φ such that:

cosφ =
1
2

tr(T ) (17)

Then the eigenvalues of the transfer matrix are given by:

λ±(E) = e±iφ(E) (18)

Note the quantization condition is cosφ(E) = 1
2 tr(T (E))

and Φ = 2πk
N .

ref [3]

Density of States

The density of states ρ(E) gives the number of states
within an energy range ∆E which contains the energy E. The
angular difference ∆Φ is proportional to the number if states
in the interval ∆E. Each energy band will contain N states.
Thus:

dN
N

=
ρ(E)dE

N
=

dΦ

dE
(19)

ρ(E) =
N
2π

dΦ

dE
(20)

Since we are using a computational approach, the density
of states can be estimated as the difference of Φover an en-
ergy step.

ρ(E) ∼ Φ(Ei+1) − Φ(Ei) (21)

ref [3]

Algorithm

For clarity, we now restate the algorithm for computing
energy bands and the density of states given in ref [3]:

1. Choose a value of E.
2. Compute M(Vi; δ j) for each piece of the potential in the

unit cell using equation (10).
3. Compute the transfer matrix for the unit cell by mu-

tiplying in order, all the matrices computed in the previous
step.

4. Compute cos(φ) as described in equation (17).
5. Compute φ for cases where |cos(φ)| ≤ 1 .
6. Construct the density of states plot using equation (21).
7. Construct the energy band plot using the computed val-

ues of φ.

III. Results

Now we present the band structure and density of state cal-
culations performed using the method described above. The
computation was was implemented on MAPLE 12. All cal-
culations were performed with an energy resolution of 0.001
eV. Each computation was completed within a matter of min-
utes on a standard computer.

Unit Cell With Two Atoms

We attempt to apply the above technique to compute the
band structure and density of states of a 1-dimensional lat-
tice consisting of a two atom unit cell. We assume the real
potential of the unit cell is in the form of a dual gaussian as
shown below:

Figure 1. Potential of a two atom unit cell

Approximation with Two Square Potentials. Now we ap-
proximate the above potential with two square wells as seen
in the figure below, so that the unit cell is approximated by 4
pieces.

Figure 2. Dual square well approximation of the dual gaussian
potential

The computation results in the following:

Figure 3. Energy Bands(Left) and Density of States(Right) of the
potential approximated by two square wells

Some of the energy band lines do not extend all the way
from 0 to π. This is an artificact of the energy resolution
and can be resolved by choosing a smaller energy step in the
calculation.

Gaussians Approximated With Many Square Wells. We
now repeat the above computation. In this case, the two
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gaussians have been approximated with seven piece and five
piece square well potentials respectively, so that the unit cell
is approximated by 14 pieces. The figure below shows the
potential approximation:

Figure 4. Gaussians approximated by 14 pieces

The results of the computation are as follows:

Figure 5. Band Structure(Left) and Density of States(Right) for
the potential approximated by 14 pieces

Discussion
There is a clear difference between the energy bands com-

puted using the two different approximations given above.
The two well approximation gives energy bands which are
clearly seperated. In the case of the 14 piece approxima-
tion, the energy band gaps become smaller. This suggests
that using simple approximations might yield results that are
not fully representative of the original system under study.
While the approximations we made involved hard potentials,
the number of potential pieces can be easily increased until
they represents a smooth gaussian.

We have presented a technique of computing the band
structure and density of states of a 1-dimensional lattice.
The method does not require the extreme simplification re-
quired by the Kronig-Penney model but maintains the com-
putational simplicity of solving the Schrodinger equation for
potential wells. The technique can be easily implemented on
a computer. The main strength of the technique is its ability
to model smooth potentials, thus being able to model poten-
tials that occur in nature.
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