O,
‘he

18

ely
i L

nt
16
an
ite
or
we
LE.

' a

of
is
of

1t,

It
ce
th
en

ad
m.
he

M-

ms

On the Relation between the Quantum
Mechanics of Heisenberg, Born, and
Jordan, and that of Schrddinger

(Annalen der Physik (4), vol. 79, 1926)

§ 1. Introduction and Absiract

ConsIpERING the extraordinary differences between the starting-points
and the concepts of Heisenberg’s quantum mechanics! and of the
theory which has been designated * undulatory” or  physical”
mechanics,? and has lately been described here, it is very strange that
these two new theories agree with one another with regard to the known
facts, where they differ from the old quantum theory. I refer, in
particular, to the peculiar “ half-integralness” which arises in
connection with the oscillator and the rotator.” That is really very
remarkable, because starting-points, presentations, methods, and in
fact the whole mathematical apparatus, seem fundamentally different.
Above all, however, the departure from classical mechanics in the two
theories seems to occur in diametrically opposed directions. In
Heisenberg’s work the classical continuous variables are replaced by
systems of discrete numerical guantities (matrices), which depend on
a pair of integral indices, and ave defined by algebraic equations. The
authors themselves describe the theory as a “true theory of a dis-
continuum 72 On the other hand, wave mechanics shows just the
reverse tendency ; it is a step from classical point-mechanics towards
a continuum-theory. In place of a process described in terms of a
finite number of dependent variables occurring in a finite number of
total differential equations, we have a continuous field-like process in

! W. Heisenberg, Ztschr. f. Phys. 33, p. 879, 1925 ; M. Born and P, Jordan, idem 34,
p. 858, 1925, and 35, p. 557, 1926 (the latter in collaboration with Heisenberg). I may
‘be allowed, for brevity’s sake, to replace the three names simply by Heisenberg, and to
quote the Jast two essays as “ Quantum Mechanics I. and IL.” Interesting contributions
to the theory have also been made by P. Dirac, Proc. Roy. Soc., London, 109, p. 642.
1925, and idem 110, p. 561, 1926.

2 B. Schrédinger. Parts L. and II. in this collection. These parts will be continued
E:xi{te independently of the present paper, which is only intended $0 serve as 2 connecting

3« Quantum Mechanies I.” p. 879.
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46 WAVE MECHANICS

configuration space, which is governed by 2 single partial differential
equation, derived from a principle of action. This principle and this
differential equation replace the equations of motion and the quantum
conditions of the older * classical quantum theory .1

In what follows the very intimate inner connection between
Heisenberg’s quantum mechanies and my wave mechanics will be
disclosed. From the formal mathematical standpoint, one might well
speak of the identity of the two theories. The train of thought in the
proof is as follows.

Heisenberg’s theory connects the solution of a problem in quantum
mechanies with the solution of a system of an infinite number of
algebraic equations, in which the unknowns—infinite matrices—are
allied to the classical position- and momentum-co-ordinates of the
mechanical system, and functions of these, and obey peculiar caleu-
lating rules. (The relation is this: to one position-, one momentum-
co-ordinate, or to one function of these corresponds always one infinite
matrix.)

I will first show (§§ 2 and 3) how to each function of the position-
and momentum-co-ordinates there may be related a matrix in such
a manner, that these matrices, in every case, satisfy the formal cal-
culating rules of Born and Heisenberg (among which I also reckon
the so-called “ quantum condition ” or interchange rule”; see
below). This relation of matrices to functions is general ; it takes no
account of the special mechanical system considered, but is the same
for all mechanical systems. (In other words : the particular Hamilton

- function does not enter into the connecting law.) However, the relation

is still indefinite to a great extent. It arises, namely, from the

auziliary iniroduction of an erbitrary complete orthogonal system of
functions having for domain entire configuration space (N.B.—not
“ pg-space ”, but “g-space ). The provisional indefiniteness of the
relation lies in the fact that we can assign the auwziliary role to an
arbilrary orthogonal system.

After matrices are thus constructed in a very general way, so as to
satisfy the general rules, I will show the following in § 4. The special
system of algebraic equations, which, in a special case, connects the
matrices of the position and impulse co-ordinates with the matriz of
the Hamilion function, and which the authors call “equations of
motion ”, will be completely solved by assigning the auxiliary réle to a
definite orthogonal system, namely, to the system of proper functions
of that partial differential equation which forms the basis of my wave
mechanics. The solution of the natural boundary-value problem of this
differential equation is completely equivalent to the solution of Heisen-
berg’s algebraic problem. All Heisenberg’s matrix elements, which

1 My theory was inspired by L. de Broglie, Ann. de Physigue (10) 3, p. 22, 1925
(Theses, Paris, 1924), and by brief, yet infinitely far-seeing remarks of A. Einstein,
Berl. Ber.,1925, p. 9 et seq. 1 did not at all suspect any relation to Heisenberg’s theory
at the beginning. 1 paturally knew about his theory, but was discouraged, if not

repelled, by what appeared to me as very difficolt methods of transcendental algebra,
and by the want of perspicuity (Anschaulichkeit).
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MATRIX MECHANICS AND WAVE MECHANICS 47

may interest us from the surmise that they define “ transition prob-
abilities” or ‘“line intensities”, can be actually evaluated by
differentiation and quadrature, as soon as the boundary-value problem
is solved. Moreover, in wave mechanics, these matrix elements, or
quantities that are closely related to them, have the perfectly clear
significance of amplitudes. of the partial oscillations of the atom’s
electric moment. The intensity and polarisation of the emitted light
is thus intelligible on the basis of the Maxwell- Lorentz theory. A
short preliminary sketch of this relationship is given in § 5. -

§ 2. The Co-ordination of an Operator and of a Matrix with a Well-
arranged Function-symbol and the Establishment of the Product Rule

The starting-point in the construction of matrices is given by the
simple observation that Heisenberg’s peculiar calculating laws for
functions of the double set of n quantities, gy, qa, . . ., Gn; P15 Pos

. ., Pn (position- and canonically conjugate momentum-co-ordinates)
agree exactly with the rules, which ordinary analysis makes Iinear
differentral operators obey in the domain of the single set of n variables,
@1, 92 - - > qn. S0 the co-ordination has to occur in such a manner
that each p; in the function is to be replaced by the operator 3%1
Actually the operator % is exchangeable with 5—2—, where o is

m
arbitrary, but with ¢, only, if m+!l. The operator, obtained by
interchange and subtraction when m =1, viz.

0 0

(1) L
when applied to any arbitrary function of the g’s, reproduces the
function, 4.e. this operator gives identity. This simple fact will be
reflected in the domain of matrices as Heisenberg’s interchange rule.

After this preliminary survey, we turn to systematic construction.
Since, as noticed above, the interchangeability does not always hold
good, then a definite operator does not correspond uniquely to a
definite * function in the usual sense” of the ¢’s and p’s, but to a
* function-symbol written in a definite way ”. Moreover, since we
can perform only the operations of addition and multiplication with

the operators Fr the function of the ¢’s and p’s must be written as a

regular power series in p at least, before we substitute '3% for p. It

is sufficient to carry out the process for a single term of such a power
series, and thus for a function of the following construetion :

(2) Fge, ) =flgs - - - 90)PrPsP9(Gs - - - G)Pr PGy - . - qu)prpe. -
We wish to express this as a “ well-arranged ! function-symbol ”* and
relate it to the following operator,

1 Or “ well-ordered.”
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®) [F - 1=f@ - - . qn)mag%ﬁy(ql . q,,)Ka%

| .
kg . .. qo)B%—— . ..
@ e,

wherein, somewhat more generally than in the preliminary survey,
P 1s not replaced by -a%- simply, but by Ka%-, and K stands for a
r

»
universal constant. As an abbreviation for the operator arising out of
the well-arranged function F, I have introduced the symbol [F, - ]
in passing (i.¢. only for the purpose of the present proof).” The function
(in the usual sense) of ¢, ... . gn, which is obtained by using the
operator on another function (in the usual sense), u(g, .. . g,), will
be denoted by [F, u]. If @ is another well-arranged function, then
[GF, u] will denote the function u after the operator of F has
Jfirst been used on it, and then the operator of G'; or, what is defined
to be the same, when the operator of GF has been used. Of course
this is not generally the same as [F@, u].

Now we connect a mairiz with a well-arranged function, like F,
by means of its operator (3) and of an arbitrary complete orthogonal
system having for its domain the whole of ¢-space. It is done
as follows. Kor brevity we will simply write © for the group of

o

variables g, g, . . . gn, a8 is usual in the theory of Integral Equations,
-and write f dz for an integral extending over the whole of g-space,
The functions

(4) u(@)Ve(@), w(=)Ve(z), u(@)Ve() . . . ad inf.

aTe now to form a complete orthogonal system, normalised to 1.
Let, therefore, in every case

) { [ pl@)udz)u(2)dz=0 for ¢ =k
' =1 for ¢ =k,

Further, it is postulated that these functions vanish at the natural
boundary of g-space (in general, infinity) in a way sufficient to cause
the vanishing of certain boundary integrals which come in later on as
secondary products after certain integrations by parts.

By the operator (3) we now relate the following matriz,

® F2= [p(@hd o) F, uo)liz,

to the function F represented by (2). (The way of writing the indices
on the left-hand side must not suggest the idea of “ contravariance ” ;
from this point of view, here discarded, one index was formerly written
above, and the other below; we write the matrix indices above,
because later we will also have to write matrix elements, corresponding
to the ¢'s and 2’s, where the lower place is already occupied.) In
words : a matrix element is computed by multiplying the function of
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MATRIX MECHANICS AND WAVE MECHANICS 49

the orthogonal system denoted by the row-index (whereby we under-
stand always w;, not %V/p), by the “density function” p, and by
the result arising from using our operator on the orthogonal function
corresponding to the column-index, and then by integrating the whole
over the domain.!

It is not very difficult to show that additive and multiplicative
combination of well-arranged functions or of the appertaining operators
works out as matrix addition and matrix multiplication of the allied
matrices. For addition the proof is trivial. For multiplication the
proofF runz:i as follows. Let G be any other well-arranged function,
like F, an

) = a6, unlm) i,

the matrix corresponding. We wish to form the product matrix
(FG@Ym = %F”G’m.

Before writing it, let us transform the expression (6) for F¥ as follows.
By a series of integrations by parts, the operator [F, - ]is ““revolved ”
from the function u{z) to the function p(z)ui(z). By the expression
“revolve ” (instead of, say, “push”) 1 wish to convey that the
sequence of the operations reverses itself exactly thereby. The
boundary integrals, which come in as *“ by-products ”, are to disappear
(see above). The *revolved” operator, including the change of
sign that accompanies an odd number of differentiations, will be
denoted by [F, - ]. For example, from (3) comes
= 0% 0
’ e f={=1) - —_—
(3) {F, «}=(-1y... K ,agr,k(ql R DL ry

0gs
9 - - - t::'sn)K"—-—-—*a3 fla ... qn)
1 aQtaQaaQr 1 3

where 7=number of differentiations. By applying this symbol, we
have

®) Pi= [w@IF, p(eyula)lds.
If we now calculate the product matrix, we get
(8 E&F"‘G’m

~2{ [u(@F, plepuelele . [ plapa()G, un(2) i

= [IF; p(@)ul)16) unfz)lda.
The last equation is simply the so-called “ relation of completeness ”

1 More briefly : F* is the kth * development coefficient ™ of the operator used on
the function %;.
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of our orthogonal system,? a.pphed to the “ development coefficients *
of the functions

[G: “m(x)] a'nd T_)[F s P(x)uk(x)]-

Now in (8), let us revolve, by further mtegratlons by parts, the

operator [F, « ]from the function p(zhu(z) back again to the function
{G, un(z)], so that the operator regains its original form. We clearly
get

() (FGyom =S¥ = ]p(x)u,,(x}[.m, (7).

On the left is the (km)th element of the product matrix, and on the
right, by the law of connection (6}, stands the (,km)th element of the
matnx, corresponding to the well-arranged product FG. Q.E.D.

§ 3. Heisenberg’s Quantum Condition and the Rules for
Partial Differentiation

Since operation (1) gave identity, then corresponding to the well-
arranged function .

(10) P — QP
we have the operafor, multiplication by K, in accordance with our

law of connection, in which we incorporated a universal constant K.
Hence to function (10) corresponds the matriz

(11) (o gt =K f p{z)ufxyu({x)dz =0 for i sk
=K for 1=k.
That is Heisenberg’s  quantum relation ” if we put

and this may be assumed to hold from now on. It is understood that

we could have also found relation (11) by taking the two matrices
allied to q; and p), Viz

(13) g = f (@Y @yus(x)d,
p*=K f pla)us(z) “"(m)dw,

multiplying them together in different sequence and subtracting the
two results.
Let us now turn to the “rules for partial differentiation ”
A well-arranged function, like (2), is said to be differentiated partzally
with respect to g;, when it is differentiated with respect to ¢; without
1 See, e.g., Courant-Hilbert, Methods of Mathematical Physics, 1., p. 36. It is
important to remember that the * relation of completeness ** for the “ develo mend

coefficients ” is valid in every case, even when the developments themselves do not
converge. If these do converge, then the eqmvalenee (8) is directly evident.
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MATRIX MECHANICS AND WAVE MECHANICS 51

altering the succession of the factors at each place where g; appears in
it, and all these results are added.! Then it is easy to show that the
following equation between the operators is valid :

(14). % - |- -Fn, -1

The line of thought is this. Instead of really differentiating with
respect to g;, it is very convenient simply to prefix p; to the function ;

as it is, p; must finally be replaced by K%. Obviously I have to divide
by K. Furthermore, when we apply the entire operator to any
function %, the operator 0 will act not only on that part of ¥ which

contains ¢; (as it ought), but also wrongly on the function u, affected
by the entire operator. This mistake is exactly corrected by subtracting
again the operation [Fp;, - ]!

Consider now partial differentiation with respect fo a p;. Its
meaning for a well-arranged function, like (2), is a little simpler than

in the case of 3%1’ because the p’s only appear as power products.

We Imagine every power of p; to be resolved into single factors, e.g.
think of ppg:; wstead of p?, and we can then say: in partial
differentiation with respect to p;, every separate p; that appears in
F is to be dropped once, all the other p;'s remaining ; all the resuits
obtained are to be added. What will be the effect on the operator (3) ?

“ Every separate K;-—; is to be dropped once, and all the results so

obtained are to be added.”
I maintain that on this reasoning the operational equation

(15) 5+ |-&Fu-oF. -]

is valid. Actually, I picture the operator [Fg;, + ]as formed and now
attempt to ““ push ¢ through F from right to left ”, that means,
attempt to arrive at the operator [, F, -]through successive exchanges.
This pushing throngh meets an obstacle only as often as 1 come

against a 5 With the latter I may not interchange ¢; simply, but

have to replace

(16) ? 2

in the interior of the operator. The secondary products of the inter-
change, which are yielded by this  uniformising ”, form just the

1 We are naturally following Heisenberg faithfully in all these definitions. ¥rom
a strictly logical sta.lr_l;llpoint the following proof is evidently superfluous, and we could
have written down rules (14) and (15) right away, as they are proved in Hemenbe;g,
and only depend upon the sum and product rules end the exchange rule (11) which
we have proved.
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desired “ partial differential coefficients ”, as is easily seen. After the
pushing-through process is finished, the operator [gF, - }still remains
left over. It would be superfluous and therefore is explicitly sub-
tracted in (15). Hence (15) is proved. The equations (14) and (15),
which have been proved for operators, naturally hold good unchanged
for the matrices belonging to the right-hand and left-hand sides,
because by (6) one matrix, and one on] , belongs to one linear operator
(after the system u;(z) has been chosen once for all).

§ 4. The Solution of Heisenberg’s Equations of Motion

We have now shown that matrices, constructed according to
definitions (3) and (6) from well-arranged functions by the agency of
an arbitrary, complete orthogonal system (4), satisfy all Heisenberg’s
calculating rules, including the interchange rule {(11). Now let us
consider a special mechanica) problem, characterised by a definite
Hamilton function

(17) (g, p)-

The authors of quantum mechanics take this function over from
ordinary mechanics, which naturally does not give it in a  well-
arranged ”’ form; for in ordinary analysis no stress is laid on the
sequence -of the factors. They therefore * normalise ” or “sym-
wetricalise  the function in a definite manner for their purposes.
For example, the usual mechanical function g2 is replaced by

Mo+ amd)

» In passing it may be noted that the converse of this theorem is also true, at Jeast
in the sense that certainly not more than one linear differential operator can belong to
a given mairiz, according to our connecting law (6), when the orthogonal system and
the density function are prescribed. For in (6), let the Fx’s be given, fet [F, +] be the
linear operator we are seeking and which we presume to exisl, and let ¢{x) be a fanction
of 1, Q2»s - « +, Gu, which is sectionally continuous and differentiable ag often as
necessary, but otherwise arbitrary, Then the relation of completeness applied to the
functions ¢(z} and [F, ux{z)] yields the following :

Sol=laF, ur@e=2{ [ sedptaue)is . fozpuo)F, wi(a)]dz}.

The right-hand side can be regarded as definitely known, for in it occur only develop-
ment coefficients of ¢(z) and the prescribed matrix elements Fix, By © revolving *
(see above), we can change the left-hand side into the %th development coefficient of

the function _
iF, P(ﬂ‘ﬁ(ﬂl
plz)

Thus all the development coefficients of this function are uniquely fixed, and thus so is
the function itself (Courant-Hilbert, p- 37). Since, however, p(x) was fixed before.
band and ¢(z) is a quite arbitrary function, we can say : the result of the action of
the revolved operator on an arbitrary function, provided, of course, it can be submitted
to the operator at all, is fixed uniquely by the matrix F*, This can only mean that
the revolved operator is uniquely fixed, for the notion of * operator ™ is logically identical
with the whole of the results of its action. By revolving the revolved operator, we
‘obtzin uniquely the operator we have sought, itself.

It is to be noted that the developabifity of the functions which appear is nof
necessarily postulated—we have not proved that 2 linear operator, corresponding to
an arbitrary matrix, always exists.
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MATRIX MECHANICS AND WAVE MECHANICS 53

or by PP
or by PP + Pgapi + i),
which are all the same, according to (11). This f.unc_ztion 1is then ‘.‘ well-
arranged ”, i.e. the sequence of the factors is inviolable. I will not
enter into the general rule for symmetricalising here ;! the idea, if I
understand it aright, is that H® is to be a diagonal mairiz, aJ}d n
other respects the normalised function, regarded as one of ordinary
analysis, is to be identical with the one originally given.? We will
satisfy these demands in a direct mapner. o .
Then the authors postulate that the matrices g%, pi* sh?;ll satisfy
an infinite system of equations, as * equations of motion ”, and to
begin with they write this system as follows :

(18) %w=(%)* 1=1,2,3,...n
(%)2(_%%)* i k=1,2,3, ... ad iof.

The upper pair of indices signifies, as before in F¥, the respective
element of the matrix belonging to the well-arranged function in
question. The meaning of the partial differential coefficient on the

right-hand side has just been explained, but not that of the % appearing

on the left. By it the authors signify the following. It is to give a
series of numbers

(19) YV, Vor Var Vg - - a‘d inf-: d
such that the above equations are fulfilled, when to the R?is ascribed

the meaning : multiplication of the (ik)th matrix element by 27/ -1
(vi—v). Thus, in particular,

% )
%)t =27V - v —vi)gi*;

(%%)* =2y~ 1(v; - ve)pitk,

The series of numbers (19) is not defined in any way beforehand, but
together with the matrix elements ¢/*, p/*, they form the numerical
unknowns of the system of equations (18). The latter assumes the
form

(20)

o 1
(vi = v)g* =z( Hg -q H)
(18) 1
(vi —vi)pi =5 (Hpr~p H)
1 tam Mechanies 1. p. 873 ef seq.
2 Tl?: as?ﬂ‘;?r postulation—g shall yield the same quantum-mechanical equations
of motion "—1I consider too narrow.. It arises, in my opinion, from the fact that the

suthors confine themselves to power products with regard also to the q’s—which is '
UnNecessary.
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when we utilise the explanation of the symbols (20), and the calculating
rules (14) and (15), and take account of (12).

We must thus satisfy this system of equations, and we have no
means at our disposal, other than the suitable choice of the orthogonal
system (4), which intervenes in the formation of the matfices. I now
assert the following : '

1. The equations (18) will in general be satisfied if we choose as
the orthogonal system the proper functions of the natural boundary
value problem of the following partial differential equation,

(21) ~[H, 1+ Ey=0.

¢ is the unknown function of ¢y, ¢s, . . ., gn; E is the proper value
parameter. Of course, as density function, p(z) appears that function
of g1, . . ., gn, by which equation (21) must be multiplied in order to
make it self-adjoint. The guantities »; are found to be equal to the
proper ga.lues E; divided by 4. H" becomes a diagonal matrix, with
H¥=E;.

2. If the symmetricalising of the function H has been effected in a
suitable way—the process of symmetricalising, in my opinion, has not
hitherto been defined uniquely-—then (21) %5 identical with the wave
equation which 1s the basis of my wave mechanics.?

Assertion 1 is almost directly evident, if we provisionally lay aside
the ‘questions whether equation (21) gives rise at all to an intelligible
boundary value problem. with the domain of entire ¢-space, and
whether it can always be made self-adjoint through multiplication by
a suitable function, etc. These questions are largely settled under
beading 2. For now we have, according to (21) and the definitions of
proper values and functions,

(22) [ H: u‘l] = E‘cﬂi’

and thus from (6) we get

HE - [ p(xyur(x) H, wix)lde= E; [ p{z)yuz)u(z)dz
=0forl+%

=E;for =k,
and, for example,

(23)

((Hg)* = SHimgpt ~ Bt
\ (@)~ ZqimH™E = By,
s0 that the right-hand side of the first equation of (18') takes the value

(24)

E,~-E, .
(25) -'“;;-—k%"‘-

Similarly for the second equation. Thus everything asserted under 1
is proved.

* Equation (18", Part I1.
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Tet us turn now to assertion 2, which is, that there is agreement
between the negatively taken operator of the Hamilton function (suit-
ably symmetricalised) and the wave operator of wave mechanics.
will first illustrate by a simple example why the process of sym-
metricalisation seems to me to be, in the first instance, not unique.
Let, for one degree of freedom, the ordinary Hamilton function be

(26) : H=}p*+9°)-

Then it is admitted that we can take this function, just as it stands,
unchanged, over to “quantura mechanics” as a *“ well-arranged
function. But we can also, and seemingly indeed with as much right
to begin with, apply the well-arranged function

(@) B- Yo @p+e)

where f(g) is a function arbitrary within wide limits. f{(g) would appear
in this case as 2  density function ” p(z). (26) is quite evidently just
a special case of (27), and the question arises, whether (and how) it
is at all possible to distinguish the special case we are concerned
with, i.e. for more complicated H-functions. Confining ourselves to
power products only of the gi’s (where we could then simply prohibit
the “ production of denominators ') would be most inconvenient just
in the most important applications. Besides, I believe that does not
lead to correct symmetricalisation.

For the convenience of the reader, I will now give again a short
derivation of the wave equation in a form suited to the present purpose,
confining myself to the case of classical mechanics (without relativity
and magnetic fields). Let, therefore,

(28) H =T(qz, ) + V{gs),

T being a quadratic form in the pg's. Then the wave equation can be
deduced ! from the following variation problem,

' ) o
8J1 = 8[ {mT(Q]ﬂ 5%) -+ !pEV(qk) }Ap—i’dﬁi =0,
(29 with the subsidiary condition
Jy= f A,z =1,

As above, fd:c stands for[ . . qul .. . dgn; Ap~tis the reciprocal

of the square root of the discriminant of the quadratic form T. This
factor must not be omitted, because otherwise the whole process would
ot be invariant for point transformations of the ¢'s! By all means
another explicit function of the ¢’s might appear as a factor, t.e. a
function which would be invariant for a point transformation of the gs.
(For A,, as is known, this is not the case. Otherwise we could omit A,~¥,
if this extra function was given the value A,t)

If we indicate the derivative of T with respect to thaf argument,

1 Equations (23) and (24) of Part L
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which originally was g, by the suffix Prs We obtain, as the result of the
variation, - _
0=1(3J, - E3J. 2)
B ? o
= s m— e - i’ —
(30) f { 8t ? og A T"k(q"’ a_qf,)]

+ (@)~ E)Ay~4 oy
the Eulerian variation equation thus runs :

h? 0 G
(1) 5200 % BE;{AP**T AN ) éj—;;)} = Vigeyp + B =0.

It is not difficult to see that this equation has the form of (21) if we
remember our law connecting the operators, and consider

(32) T'(q, px) = 1207, (02, 12)

the Fulerian equation for homogeneous functions, applied to the
quadratic form 7. In actual fact, if we detach the operator from
the left side of (31), with the proper value term Ey removed, and

.. R @ . ..
replace in it o/ %0 by 7:, then according to (32) we obtain the

negatively taken Hamilton function (28). Thus the process of variation
has given quite automatically a uniquely defined “* symmetricalisation
of the operator, which makes it self-adjoint (except possibly for a
common. factor) and makes it invariant for point transformations, and
which I would like 4o maintain, as long as there are no definite reasons
for the appearance under the integrals (29) of the additional factor,
already ! mentioned as possible, and for a definite form of the latter.

Hence the solution of the whole system of matrix equations of
Heisenberg, Born, and Jordan is redueed to the natural boundary
value problem of a linear partial differential equation. If we have
solved the boundary value problem, then by the use of (6) we can
calculate by differentiations and quadratures every matrix element we
are intérested in.

boundary value problem, s.e. by the natural boundary conditions at
the natural boundary of co ation space, we may refer to the
worked exaraples.? It invariably turns out that the natural infinitely
distant boundary forms 2 singularity of the differential equation and
only aflows of the one boundary condition—* remaining finite ”. This
seems to be a general characteristic of those micro-mechanical prob-
lems with which the theory in the first place is meant to deal. If the
domain of the position co-ordinates is artificially limited (example :
a molecule in 2 “ vessel ), then an essential allowance must be made
for this limitation by the introduction of suitable potential energies in

1 Cf. also Ann. d. Phys. 79, P- 362 and p. 510 (i.e. Parts I. and I1).
% In Parts I. and II. of this collection.
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the well-known manner. Also the vanishing of the proper functions at
the boundary generally occurs to an adequate degree, even if relations
among certain of the integrals (6) are present, which necessitate &
special investigation, and into which I will not enter at present. (It
has to do with those matrix elements in the Kepler problem which,
according to Heisenberg, correspond to the transition from one
hyperbolic orbit to another.)

I have confined myself here to the case of classical mechanics,
without magnetic fields, because the relativistic magnetic generalisa-
tion does not seem to me to be sufficiently clear yet. But we can
scarcely doubt that the complete parallel between the two new quantum
theories will still stand when this generalisation is obtained.

We conclude with a general observation on the whole formal
apparatus of §§ 2, 3, and 4.  The basic orthogonal system was regarded
as_an absolutely discrefe system of functions. Now, in the most
important applications this is not the case. Not only in the hydrogen
atom but also in heavier atoms the wave equation (31} must possess
a continuous proper value spectrum as well as a line spectrum.
The former manifests itself, for example, in the continuous optical
spectra which adjoin the limit of the series. It appeared better,
provisionally, not to burden the formulae and the iine of thought
with this generalisation, though it is indeed indispensable. The chief
aim of this paper is to work out, in the clearest manner possible, the
formal connection between the two theories, and this is certainly not
changed, in any essential point, by the appearance of a confinuous
spectrum. An important precaution that we have always observed
is not to postulate, without further investigation, the convergence of
the development in a series of proper functions. This precaution is
especially demanded by the accumulation of the proper values at a
finite povnt (viz. the limit of the series). This accumulation is most
intimately eonnected with the appearance of the continuous spectrum.

§ 5. Comparison of the Two Theories. Prospect of a2 Classical Under-
standing of the Intensity and Polarisation of the Emitted Radiation

If the two theories—I might reasonably have used the si —
should ! be tenable in the form just given, i.e. for more complicated
systems as well, then every discussion of the superiority of the one
over the other has only an illusory object, in a certain sense. For
they are completely equivalent from the mathematical point of view,
and it can only be a question of the subordinate point of convenience
of calculation.

1 There is a special resson for leaving this question open. The two theories initially
take the energy function over from ordinary mechanics. Now in the cases trested the-
potential energy arises from the interaction of particles, of which perhaps one, at least,
may be regarded in wave mechanics also as forming a point, on account of its great mass
(¢f. A. Einstein, Berl. Ber., 1925, p. 10). We must take into account the possibility
that it is no longer permissible to take over from ordinary mechanics the statement:
for the potential energy, if both © point charges * are really extended states of vibration,
which penetrate each other.
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To-day there are not a few physicists who, like Kirchhoff and
Mach, regard the task of physical theory as being merely a mathe-
matical description (as economical as possible) of the empirical con-
nections between observable quantities, s.¢. a description which repro-
duces the connection, as far as possible, without the intervention of
unobservable elements. On this view, mathematical equivalence has
almost the same meaning as physical equivalence. In the present
case there might perhaps appear to be a certain superiority in the
matrix representation because, through its stifimg of intuition, it
does not tempt us to form space-time pictures of atomic processes,
which must perhaps remain uncontrollable. In this connection, how-
ever, the following supplement to the proof of equivalence given
above is interesting. The equivalence actually exists, and it also
exists conversely. Not only can the matrices be constructed from the
proper functions as shown above, but also, conversely, the functions
can be constructed from the numerically given matrices. Thus the
functions do not form, as it were, an arbitrary and special fleshly
clothing  for the bare matrix skeleton, provided to pander to the
need for intuitiveness. This really would establish the superiority of

the matrices, from the epistemological point of view. We suppose
that in the equations

@3 - gB= f wi{2)u(z)de

the left-hand sides are given numerically and the functions ()
are to be found. (N.B.—The “ density function” is omitted for
simplicity ; the ui(z)’s themselves axre to be orthogonal functions for the
present.) We may then calculate by matrix multiplication (without,

by the way, any *revolving”, i.e. integration by parts) the following
integrals,

(34) [ P2z a)dz,

where P(z) signifies any power product of the g’'s. The totality of
these integrals, when 4 and % are fixed, forms what is called the
totality of the “ moments ™ of the function u(@yup(z). And it is
kmown that, under very general assumptions, a function is determined
uniquely by the totality of its moments. So all the products
ufz)ug{x) are uniquely fixed, and thus also the squares )2,
and therefore also wi() itself. The only arbitrariness lies in the
supplementary detachment of the density function p(z), eg. r?sin f
in polar co-ordinates. No false step is to be feared there, certainly
not so far as epistemology is concerned.

Moreover, the validity of the thesis that mathematical and physical
equivalence mean the same thing, must itself be qualified. Let
us think, for example, of the two expressions for the electrostatic

energy of a system of charged conductors, the space integral 1 [ E%dr
and the sum }¥e;V; taken over the conductors. The two expressions

jz
®

[Jpus TR Ry = Sy .1 Y

—r A



md
he-
on-
To-

ent
the

it
ies,
W-
ren
Iso
the
ms
the
hly
the

DS

()
for

the

ng

MATRIX MECHANICS AND WAVE MECHANICS 59

are completely equivalent in electrostatics ; the one may be derived
from the other by integration by parts. Nevertheless we intentionally
prefer the first and say that 4 correctly localises the energy in space.
In the domain of electrostatics this preference has admittedly no
justification. On the contrary, it is due simply to the fact that the
first expression remains useful in electrodynamics also, while the
second does not.

We cannot yet say with certainty to which of the two new quantum
theories preference should be given, from #A4s point of view. As the
natural advocate of one of them, I will not be blamed if I frankly—
and perhaps not wholly impartially—bring forward the arguments in
its favour.

Leaving aside the special optical questions, the problems which
the course of development of atomic dynamics brings up for considera-
tion are presented to us by experimental physics in an eminently
intuitive form ; as, for example, how two colliding atoms or molecules
rebound from ore another, or how an electron or a-particle is diverted,
when it is shot through an atom with a given velocity and with the
initial path at a given perpendicular distance from the nuecleus. In
order to treat such problems more particularly, it is necessary to survey
clearly the transition between macroscopic, perceptual mechanics and
the micro-mechanics of the atom. I have lately! explained how I
picture this transition. Micro-mechanics appears as a refinement of
macro-mechanics, which is necessitated by the geometrical and
mechanical smallness of the objects, and the transition is of the same
nature as that from geometrical to physical optics. The latter is
demanded as soon as the wave length is no longer very great com-
pared with the dimensions of the objects investigated or with the
dimensions of the space inside which we wish to obtain more accurate
information about the light distribution. To me it seems extra-
ordinarily difficult to tackle problems of the above kind, as long
as we feel obliged on epistemological grounds to repress intuition
in atomic dynamics, and to operate only with such abstract ideas as
transition probabilities, energy levels, ete.

An especially important question—perhaps the cardinal question of
all atomic dynamics—is, as we know, that of the coupling between the
dynamic process in the atom and the electromagnetic field, or whatever
has to appear in the place of the latter. Not only is there connected
with this the whole complex of questions of dispersion, of resonance-
and secondary-radiation, and of the natural breadth of lines, but, in
addition, the specification of certain quantities in atomic dynamics,
such as emission frequencies, line intensities, etc., has only a mere
dogmatic meaning until this coupling is described mathematically in
some form or other. Here, now, the matrix representation of atomic
dynamics has led to the conjecture that in fact the electromagnetic
field also must be represented otherwise, namely, by matrices, so that
the coupling may be mathematically formulated. Wave mechanics

1 Part I1.
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shows we are not compelled to do this in any case, for the mechanical
field scalar (which I denote by ) is perfectly capable of entering
into the unchanged Maxwell-Lorentz equations between the electro-
magnetic field vectors, as the “ source * of the latter; just as, con-
versely, the electrodynamic potentials enter into the coefficients of
the wave equation, which defines the field scalar.? In any case, it is
worth while allempting the representation of the coupling in such a
way that we bring into the unchanged Maxwell-Lorentz equations
as four-current a four-dimensional vector, which has been suitably
derived from the mechanical field scalar of the electronic motion
(perhaps through the medium of the field vectors themselves, or the
potentials). There even exists a hope that we can represent the wave
equation for ¢ equally well as a consequence of the Maxwell-Lorentz
equations, namely, as an equation of continuity for electricity. The
dificulty in regard to the problem of several electrons, which mainly
lies in the fact that i is a function in configuration space, not in real
space, must be mentioned. Nevertheless I would like to discuss the
one-electron problem a little further, showing that it may be possible
to give an extraordinarily clear interpretation of intensity and
polarisation of radiation in this manner.

Let us consider the picture, on the wave theory, of the hydrogen
atom, when it is in such a state that the field scalar ¢ is given by a
series of discrete proper functions, thus : :

2V 1,
(35) h= %&W(m)e A

(w stands here for three variables, e.g. 7, 6, ¢ ; the ¢;’s are taken as real
and it is correct to take the real part). We now make the assumgption
that the space density of electricity is given by the real part of

o5
(36) _ £

- The bar is to denote the conjugate complex function. We then
calculate for the space density, '

(87) space density =27 X ckcm_E" = Emuk(a:)um( z) sin @(Em - E),
(k, m) h h

where the sum is to be taken once only over every combination (%, m).
Only term differences enter (37) as frequencies. The former are so
low that the length of the corresponding ether wave is large compared

! Similar ideas are expressed by K. Lanczos in an interesting note that has just
appeared (Zischr. f. Phys. 35, p. B12, 1926), This note is also valuable as showing
that Heisenberg’s atomic dynamics is capable of 2 continuous interpretation as well.
However, Lanczos’ work has fewer points of contact with the present work than at
first, it was thought to have. The determination of his formal system, which was
provisionally left quite indefinite, is not to be sought by following the idea that in some
way the symmetrical nucleus K (s, o) of Lanczos can be identified with the Green’s
Junction of our wave equation (21) or (31). For this Green’s function, if it exists, has
the quantum levels themselves as proper values. Ontlie other hand, it is required
that Lanczos’ function should have the reciprocals of the quantum levels as proper
values,
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with atomic dimensions, that is, compared with the region within
which (37) is markedly different from zero.! The radiation can there-
fore be estimated simply by the dipole moment which according to (37)
the whole atom possesses. We multiply (37) by a Cartesian co-ordinate
g, and by the “ density function” p(z), (r2sin in the present case)
and integrate over the whole space. According to (13), we get for the
component of the dipole moment in the direction g,

(38) Mg=27 X ckcmq{‘mE" ~Em sin 2Wt(Em - Ey).
(k, m) 2 h

Thus we really get a ““ Fourier development” of the atom’s electric
moment, In which only terrn differences appear as frequencies. The
Heisenberg matrix elements ¢ come into the coeffictents in such a
manner that their co-operating influence on the intensity and polarisa-
tion of the part of the radiation concerned is completely intelligible
on the grounds of classical electrodynamics.

The present sketch of the mechanism of radiation is far from com-
pletely satisfactory and is in no way final. Assumption (36) makes
use, somewhat freely, of complex calculation, in order to put to one
side undesired components of vibration whose radiation cannot be
investigated at all in the simple way used for the dipole moment of
the entire atom, because the corresponding ether wave lengths (about
0-01 A) lie far below atomic dimensions. Moreover, if we integrate
over all space, then by (5) the space density (37) gives zero and not,
as is required, a finite value, independent of the time, which requires
to be normalised to the electronic charge. In conclusion, for complete-
ness, account should be taken of magnetic radiation, since if there is
a spatial distribution of electric currents, radiation is possible without
the appearance of an electric moment, e.g. with a frame aerial.

Nevertheless it appears to be a well-founded hope that a real
understanding of the nature of emitted radiation will be obtained on
the basis of one of the two very similar analytical mechanisms which
have been sketched here.

(Received March 18, 1926).
1 Ann. d. Phys. 79, p. 371, 19286, i.e. beginning of § 2, Part 1. here.



