Quantisation as a Problem of

Proper Values (Part II)

(Annalen der Physik (4), vol. 79, 1926)

§ 1. The Hamiltonian Analogy between Mechanics and Optics

BeFoRE we go on to consider the problem of proper values for
further special systems, let us throw more light on the general
correspondence which exists between the Hamilton-Jacobi differential
equation of a mechanical problem and the “allied” wave equation,
v.e. equation (5) of Part I. in the case of the Kepler problem. So
far we have only briefly described this correspondence on its external
analytical side by the transformation (2), which is in itself unin-
telligible, and by the equally incomprehensible transition from the
equating to zero of a certain expression to the postulation that the
space integral of the said expression shall be stationary.?

The snner connection between Hamilton’s theory and the process
of wave propagation is anything but a new idea. It was not only well
known to Hamilton, but it also served him as the starting-point for
his theory of mechanics, which grew 2 out of his Optics of Non-
homogeneous Media. Hamilton’s variation principle ean be shown to
correspond to Fermat’s Principle for a wave propagation in con-
figuration space (g-space), and the Hamilton-Jacobi equation expresses
Huygens’ Principle for this wave propagation. Unfortunately this
powerful and momentous conception of Hamilton is deprived, in
most modern reproductions, of its beautiful raiment as a superfluous
accessory, in favour of a more colourless representation of the
analytical correspondence.®

1 This procedure will not be pursued further in the present paper. It was only
intended to give a (frovisiona,l, quick survey of the external connection between the
wave equation and the Hamilton-Jacobi equation. ¢ is not actually the action
function of a definite motion in the relation stated in (2) of Pari I. On the other
hand the connection between the wave equation and the variation problem is of
course very real; the integrand of the stationary integral is the Lagrange function
for the wave process. :

? Cf. e.g. E. T, Whittaker's Anal. Dynamics, chap. xi.

3 Felix Klein has since 1891 repeatedly developed the theory of Jacobi from quasi-
optical considerations in non-Euclidean higher space in his lectures on mechanies.
CL. ¥. Klein, Jakresber. d. Deutsch. Matk. Ver. 1, 1891, and Zeits. f. Math. u. Phys. 46,
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Let us consider the. general problem of conservative systems in
classical mechanics. The Hamilton-Jacobi equation runs
0 W (g N 4 v(g =0
ot Gz, agk qr) =V.
W is the action function, <.e. the time integral of the Lagrange function
T -V along a path of the system as a function of the end points
and the time. ¢ is a representative position co-ordinate; I is the
kinetic energy as function of the ¢’s and momenta, being a quadratic
form of the latter, for which, as prescribed, the partial derivatives

of W with respect to the ¢’s are written. ¥ is the potential energy.
To solve the equation put

(2) W=-Et+ S(q;c),
and obtain

. W\ o _
1) 2T(g,,., qu> ~2E-T).

E is an arbitrary integration constant and signifies, as is known, the
energy of the system. Contrary to the usual practice, we have let the
function W remain itself in (1’), instead of introducing the time-free
function of the co-ordinates, S. That is a mere superficiality.
Equation {1°) can now be very simply expressed if we make use of

" ‘the method of Heinrich Hertz. It becomes, like all geometrical

assertions in configuration space (space of the variables g¢;), especially
simple and clear if we introduce into this space a non-Euclidean metric
by means of the kinetic energy of the system.

Let T be the kinetic energy as function of the velocities gi, not of
the momenta as above, and let us put for the line element
(3) ds?=2T (qk, q.k)dtz.

The right-hand side now contains df only externally and represents
(since gudt=dg:) a quadratic form of the dgy’s.

After this stipulation, conceptions such as angle between two line
elements, perpendicularity, divergence and curl of a vector, gradient
of a scalar, Laplacian operation (=div grad) of a scalar, and others,
may be used in the same simple way as in three-dimensional Euclidean
space, and we may use in our thinking the Euclidean three-dimensional
representation with impunity, except that the analytical expressions
for these ideas become a very little more complicated, as the line
element (3) must everywhere replace the Euclidean line element. We.
stipulate, that in what follows, all geometrical statements n g-space are
to be taken in this non-Euclidean sense.

One of the most important modifications for the calculation is

1901 (Ges.-Abk. ii. pp. 601 and 603). In the second note, Klein remarks reproachfully
that his discourse at Halle ten years previously, in which he had discussed this corre-
spondence and emphasized the great significance of Hamilton’s optical works, had
“‘not obtained the general attention, which he had expected . For this allusion
to F. Klein, I am indebted to a friendly communication from Prof. Sommerfeld.
See also Afombau, 4th ed., p. 803.
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that we must distinguish carefully between covariant and contra-
variant components of a vector or tensor. But this complication is
not any greater than that which occurs in the case of an oblique set
of Cartesian axes. ,
The dgi’s are the prototype of a contravariant vector. The co-
efficients of the form 27, which depend on the g¢;’s, are therefore of a
covariant character and form the covariant fundamental tensor. 27
is the contravariant form belonging to 27, because the momenta are
known to form the covariant vector belonging to the speed vector gy,
the momentum being the velocity vector in covariant form. The
left side of (1') is now simply the contravariant fundamental form,

in which the B ’s are brought in as variables. The latter form the

components of the vector,—according to its nature covariant,
grad W.

(The expressing of the kinetic energy in terms of momenta instead
of speeds has then tkis significance, that covariant vector components
can only be introduced in a contravariant form if something intelligible,
1.. invariant, is to result.)

Equation (1) is equivalent thus to the simple statement

1n (grad W)2=2(E - V),
or
() |grad W |=+/2(E - 7).

This requirement is easily analysed. Suppose that a function W, of
the form (2), has been found, which satisfies it. Then this function
can be clearly represented for every definite ¢, if the family of surfaces
W =const. be described in ¢g-space and to each member a value of W
be ascribed.

Now, on the one hand, as will be shown immediately, equation
(1'") gives an exact rule for constructing all the other surfaces of the
family and obtaining their W-values from any single member, if the
latter and s W-value is known. On the other hand, if the sole
necessary data for the construction, viz. one surface and its W-value
be given quite arbitrarily, then from the rule, which presents just fwo
alternatives, there may be completed one of the functions W fulfilling
the given requirement. Provisionally, the time is regarded as con-
stant.—The construction rule therefore exhausts the contents of the
differential equation ; each of its solutions can be obtained from
a suitably chosen surface and W-value.

Let us consider the construction rule. Let the value W, be given
in Fig. 1 to an arbitrary surface. In order to find the surface W, +dW,,
take ewther side of the given surface as the positive one, erect the normal
at each point of it and cut off (with due regard to the sign of dW,) the
step '

() ds =—=Ws

“VRAE-T)
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The locus of the end points of the steps is the surface Wy+dW,.
Similarly, the family of surfaces may" be constructed successively on
both sides.

The construction has a double interpretation, as the other side of
the given surface might
have been taken as posi-
tive for the first step.
This ambiguity does not
hold for later steps, t.e.
at any later stage of

W,+d ¥ the process we canuot

W, change arbitrarily the

W,-d % sign of the sides of the

. surface, at which we

have arrived, as this

Fia. 1. would involve in general

a discontinuity in the
first differential coefficient of W. Moreover, the two families obtained
in the two cases are clearly identical ; the W-values merely run in the
opposite direction.

Let us consider now the very simple dependence on the téime. For
this, (2) shows that at any later (or earlier) instant ¢ +¢', the same group
of surfaces illustrates the W-distribution, though different W-values
are associated with the individual members, namely, from each W-value
ascribed at time ¢ there must be subtracted Bt’. The W-values wander,
as it were, from surface to surface according to a definite, simple law,
and for positive F in the direction of W increasing. Instead of this,
however, we may imagine that the surfaces wander in such a way that
each of them continually takes the place and exact form of the following
one, and always carries its W-value withit. The rule for this wandering
is given by the fact that the surface W, at time ¢+df must have
reached that place, which at ¢ was occupied by the surface W, -+ Edt.
This will be attained according to (4), if each point of the surface W,

is allowed to move in the direction of the positive normal through a
distance .

(®) ds ~ BTy
That is, the surfaces move with a normal velocity
{6) u & =-—-‘-E-l_—-—,
% VAE-TV)

which, when the constant E is given, is a pure function of position.
Now it is seen that our system of surfaces W =const. can be con-
ceived as the system of wave surfaces of a progressive but stationary
wave motion in g¢-space, for which the value of the phase velocity at
every point in the space is given by (6). For the normal construction
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can clearly be replaced by the construction of elementary Huygens
waves (with radius (5)), and then of their envelope. The *index of
refraction ” is proportional to the reciprocal of (6), and is dependent
on the position but not on the direction. The g-space is thus optic-
ally non-homogeneous buf is isotropic. The elementary waves are
“ spheres ”’, though of course—let me repeat it expressly once more——
in the sense of the line-element (3).

The fanction of action W plays the part of the phase of our wave
system. The Hamilton-Jacobi equation is the expression of Huygens’
principle. If, now, Fermat’s principle be formulated thus,

P, P, iy iy
M o=s| B_s| #V2E-N)_5| Lu_Ls| o1,
P “ P E i E E &

we are led directly to Hamilton’s principle in the form given by
Maupertuis (where the time integral is to be taken with the usual
grain of salt, i.e. T+V =E =constant, ever during the variation).

The * rays ™, 4.e. the orthogonal trajectories of the wave surfaces, are

therefore the paths of the system for the value E of the emergy, in
agreement with the well-known system of equations

oW
8 Pr =5
®) ¢ 0

which states, that a set of system paths can be derived from each
special function of action, just like a fluid motion from its velocity
potential.l (The momenta p; form the covariant velocity vector,
which equations (8) assert to be equal to the gradient of the function
of action.) ,

Although in these deliberations on wave surfaces we speak of
velocity of propagation and Huygens’ principle, we must regard the
analogy as one between mechdnics and geometrical optics, and not
physical or undulatory optics. For the idea of “ rays ”, which is the
essential feature in the mechanical analogy, belongs to geometrical
optics ; it is only clearly defined in the latter. Also Fermat’s principle
can be applied in geometrical optics without going beyond the idea
of index of refraction. And the system of W-surfaces, regarded as
wave surfaces, stands in a somewhat looser relationship to mechanical
motion, inasmuch as the image point of the mechanical system in
no wise moves along the ray with the wave velocity «, but, on the

contrary, its velocity (for constant E) is proportional to 5 It is given
directly from (3) as

©) - v=E AT vEET.

1 See especially. A. Einstein, Verh. d. D. Physik. Ges. 19, pp. 77, 82, 1917. The
framing of the quantum conditions here is the most akin, out of all the older attempts,
to the present one. De Broglie has returned to it.

L
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This non-agreement is obvious. Firstly, according to (8), the system’s
point velocity is great when grad W is great, i.e. where the W-surfaces
are closely crowded together, ¢.e. where is small. Secondly, from the
Jdefinition of W as the time integral of the Lagrange function, W
alters during the motion (by (T - V)ds in the time di), and so the
jmage point camnol remain continuously in contact with the same
W-suzface. :

And important ideas in wave theory, such as amplitude, wave
length, and frequency—or, speaking more generally, the wave form—do
not enter into the analogy at all, as there exists no mechanical parallel ;
even of the wave function itself there is no mention beyond that W
has the meaning of the phase of the waves (and this is somewhat hazy
owing to the wave form being undefined).

If we find in the whole parallel merely a satisfactory means of
contemplation, then this defect is not disturbing, and we would regard
any attempt to supply it as idle trifling, believing the analogy to be
precisely with geometrical, or at furthest, with a very primitive form
"of wave optics, and not with the fully developed undulatory optics.
That geometrical optics is only a rough approximation for Light makes
no difference. To preserve the analogy on the further development of
the optics of g-space on the lines of wave theory, we must take good
caze not to depart markedly from the limiting case of geometrical
optics, 4.e. must choose! the wave length, sufficiently small, <.e. small
compared with all the path dimensions. Then the additions do not
teach anything new; the picture is only draped with superfluous
ornaments.

So we might think to begin with. But even the first attempt at
the development of the analogy to the wave theory leads to such
striking results, that a quite different suspicion arises : we know to-day,
in fact, that our classwal mechanics fails for very small dimensions
of the path and for very great curvabures. Perhaps this failure is in
strict analogy with the failure of geometrical optics, i.e. “ the optics
of infinitely small wave lengths ”, that becomes evident as soon as the
obstacles or apertures are no longer great compared with the real,
finite, wave length. Perhaps our classical mechanics is the complete
analogy of geometrical optics and as such is wrong and not in agreement
with reality ; it fails whenever the radii of curvature and dimensions
of the path are no longer great compared with a certain wave length,
to which, in g-space, a real meaning is attached. Then it becomes a
question of searching ? for an undulatory mechanics, and the most

obvious way is the working out of the Hamiltonian analogy on the
lines of undulatory optics.

- 1 Cf. for the optical case, A. Sommerfeld and Iris Runge, Ann. d. Phys. 35, p. 290,
1911. There (in the working out of an oral remark of P. Debye), it is shown, bow
the equation of first order and second degree for the phase {* Hamiltonian equation ™)

‘may be accurately derived from the equation of the second order and first degree
for tlﬁe wave function (* wave equation ™), in the limiting case of vanishing wave
length.

ggt Cf. A. Einstein, Berl. Ber. p. 9 et seq., 1925.
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§ 2. “ Geometrical ” and “ Undulatory ** Mechanics

We will at first assume that it is fair, in extending the analogy, to
imagine the above-mentioned wave system as consisting of sine waves.
This is the simplest and most obvious case, yet the arbitrariness, which
arises from the fundamental significance of this assumption, must be
emphasized. The wave function has thus only to contain the time
in the form of a factor, sin ( . . . ), where the argument is a linear
function of W. The coefficient of W must have the dimensions of the
reciprocal of action, since W has those of action and the phase of a
sine has zero dimensions. We assume that it is quite universal, i.c.
that it is not only independent of E, but also of the nature of the
mechanical system. We may then at once denote it by %f The
time factor then is '

(10) sin(?fz + const.) == sin( - 27;1Et + 217%@") + const.).

k
Hence the frequency v of the waves is given by
(11) v=%‘ ,

Thus we get the frequency of the g-space waves to be proportional
to the energy of the system, in a manner which is not markedly
artificial? This is only true of course if E is absolute and not, as in
classical mechanics, indefinite to the extent of an additive constant.
By (6) and (11) the wave length is independent of this additive constant,

being

U h
(12) A== ATV
and we know the term under the root to be double the kinetic energy.
Let us make a preliminary rough comparison of this wave length
with the dimensions of the orbit of a hydrogen electron as given by
classical mechanics, taking care to notice that a “step” in g-space
has not the dimensions of length. but length multiplied by the square
root of mass, in consequence of (3). A has similar dimensions. We
have therefore to divide A by the dimension of the orbit, a.cm., say,
and by the square root of m, the mass of the electron. The quotient
is of the order of magnitude of

h

Amrmbiteteirn.

)
mva

where v represents for the moment the electron’s velocity (em./sec.).
The denominator mva is of the order of the mechanical moment of
momentum, and this is at least of the order of 10-% for Kepler orbits,
as can be calcnlated from the values of electronic charge and mass

* In Part I. this appeared merely as an approximate equation, derived from a pure
speculation.
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independently of all quantum theories. We thus obtain the correct
order for the limit of the approzimate region of validity of classical
mechanics, if we identify our constant k2 with Planck’s quantum of
action—and this is only a preliminary attempt.
If in (6), E is expressed by means of (11) in terms of v, then we
obtain .
vV

@ RV

The dependence of the wave velocity on the energy thus becomes a
particular kind of dependence on the frequency, ¢.e. it becomes a law
of dispersion for the waves. This law is of great interest. We have
shown in § 1 that the wandering wave surfaces are only loosely con-
nected with the motion of the system point, since their velocities are
not equal and cannot be equal. According to (9), (11), and (6') the
system’s velocity v has thus also a concrete significance for the wave.
We verify at once that

03 v

o
i.e. the velocity of the system point is that of a group of waves, included
within a small range of frequencies (signal-velocity). We find here
again a theorem for the ‘‘ phase waves ™ of the electron, which M. de
Broglie had derived, with essential reference to the relativity theory,
in 2§ose fine researches,® to which I owe the inspiration for this work.
‘We see that the theorem in question is of wide generality, and does not
arise solely from relativity theory, but is valid for every conservative
system of ordinary mechanics.

‘We can utilise this fact to institute a much more innate connection
between wave propagation and the movement of the representative
point than was possible before. We can attempt to build up a wave
group which will have relatively small dimensions in every direction.
Such a wave group will then presumably obey the same laws of motion
as a single image point of the mechamcal system. It will then give,
so to speak, an equivalent of the image point, so long as we can look
on it as being approximately confined to a point, 4.e. so long as we can
neglect any spreading out in comparison with the dimensions of the
path of the system. This will only be the case when the path dimen-
sions, and especially the radius of curvature of the path, are very great
compared with the wave length. For, in analogy with ordinary
optics, it is obvious from what has been said that not only must the
dimensions of the wave group not be reduced below the order of
magnitude of the wave length, but, on the contrary, the group must
extend in all directions over a large number of wave lengths, if it is
to be approzimately monochromatic. This, however, must be postu-
lated, since the wave group must move about as a whole with a definite

1 1. de Broglie, Ann. de Physigue (10) 3, p. 22, 1925. (Théses, Paris, 1924.)
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group velocity and correspond to a mechanical system of definite
energy (cf. equation 11). |

So far as I see, such groups of waves can be constructed on exactly
the same principle as that used by Debye ! and von Laue 2 to solve
the problem in ordinary optics of giving an exact analytical representa-
tion of a cone of rays or of a sheaf of rays. From this there comes
a very interesting relation to that part of the Hamilton-Jacobi theory
not described in § 1, viz. the well-known derivation of the equations of
motion in integrated form, by the differentiation of a complete integral
of the Hamilton-Jacobi equation with respect to the constants of in-
tegration. As we will see immediately, the system of equations called
after Jacobi is equivalent to the statement : the image point of the
mechanical system continuously corresponds to that point, where 2
certain continuum of wave trains coalesces in equal phase.

In optics, the representation (strictly on the wave theory) of a
“sheaf of rays” with a sharply defined finite cross-section, which
proceeds to a focus and then diverges again, is thus carried out by
Debye. A conttnuum of plane wave trains, each of which alone
would fill the whole space, is superposed. The continuum is produced
by letting the wave normal vary throughout the given solid angle.
The waves then destroy one another almost completely by inter-
ference outside a certain double cone; they represent exactly, on
the wave theory, the desired limited sheaf of rays and also the
diffraction phenomena, necessarily occasioned by the limitation. We
can represent in this manner an infinitesimal cone of rays just as
well as a finite one, if we allow the wave normal of the group to
vary only inside an infinitesimal solid angle. This has been utilised
by von Laue in his famous paper on the degrees of freedom of
a sheaf of rays.®? TFinally, instead of working with waves, hitherto
tacitly accepted as purely monochromatic, we can also allow the
frequency to vary within an infinitesimal interval, and by a suitable
distribution of the amplitudes and phases can confine the disturbance
to a region which is relatively small in the longitudinal direction also.
So we succeed in representing analytically a * parcel of energy ” of
relatively small dimensions, which travels with the speed of light,
or when dispersion occurs, with the group velocity. Thereby is given
the instantaneous position of the parcel of energy—if the detailed
structure is not in question—in a very plausible way as that point of
space where all the superposed plane waves meet In exactly agreeing

hase.
P We will now apply these considerations to the g-space waves.
We select, at a definite time ¢, a definite point P of g-space, through
which the parcel of waves passes in a given direction R, at that time.
In addition let the mean frequency v or the mean E-value for the packet
be also given. These -conditions correspond exactly to postulating
that at a given time the mechanical system is starting from a given

1 P. Debye, Ann. d. Phys. 30, p. 755, 1909. .
2 M. v. Laue, idem 44, p. 1197 (§ 2), 1914. 3 Loc. cil.
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configuration with given velocity components. (Energy plus direc-
tion is equivalent to velocity components.)

In order to carry over the optical construction, we require firstly
one set of wave surfaces with the desired frequency, i.e. one solution
of the Hamilton-Jacobi equation (1) for the given E-value. This
solution, W, say, is to bave the following property: the surface of
the set which passes through P at time ¢, which we may denote by

(14) W=W,

must have its normal at P in the prescribed direction B. But this is
still not enough. We must be able to vary to an infinitely small
extent this set of waves W in an n-fold manner (n =number of degrees
of freedom), so that the wave normal will sweep out an infinitely small
(n~ 1) dimensional space angle at the point P, and so that the frequency

?ﬁ' will vary in an infinitely small one-dimensional region, whereby

care is taken that all members of the infinitely small n-dimensional
continuum of sets of waves meet together at time ¢ in the point P in
exactly agreeing phase. Then it is a question of finding at any other
time where that point lies at which this agreement of phases occurs.

To do this, it will be sufficient if we have at our disposal a solution
W of the Hamilton-Jacobi equation, which is dependent not only on
the constant E, here denoted by a,, but also on (n-1) additional con-
stants a, &g . . . Gz, 10 such a way that it cannot be written as a function
of less than # combinations of these n constants. For then we can,
firstly, bestow on a, the value prescribed for E, and, secondly, define
Qg Gy « . . g, SO that the surface of the set passing through the point P
has at P the prescribed normal direction. Henceforth we understand
by a;, @5 - - - @n, these values, and take (14) as the surface of thus
set, which passes through the point P at time ¢{. Then we consider
‘the continuum of sets which belongs to the aj-values of an adjacent
infinitesimal aj-region. A member of this continuum, t.e. therefore

a set, will be given by

oW oW oW
(15) W+f§a';da1+é§2'd%+ ... +—;;daﬂ=const.
for a fized set of values of da,, day . . . das, and varying constant.

That member of this sef, i.e. therefore that single surface, which goes
through P at time ¢ will be defined by the following choice of the const.,

o oW oW, - (AW oW
(15) W+5&.—;da1+ PR +"a?ndaﬂ—‘w°+(t—1;';)oda1+ e +(E)odan,

where (g-}-—z) , ete., are the constants obtained by substituting in the
0

differential coefficients the co-ordinates of the point P and the value ¢
of the time (which latter really only occurs in gg)

The surfaces (15°) for all possible sets of values of da,, da, . . . day,
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form on their part @ sef. They all go through the point P at time ¢,
their wave normals continuously sweep out a little (» — 1) dimensional
solid angle and, moreover, their E-parameter also varies within a
small region. The set of surfaces (15) is so formed that each of the
sets (15) supplies one representative to (15’), namely, that member
which passes through P at time ¢.

We will now assume that the phase angles of the wave functions
which belong to the sets (15) happen to agree precisely for those
representatives which enter the set (15°). They agree therefore at
time ¢ at the point P.

We now ask: Is there, at any arbitrary time, 2 point where all surfaces
of the set (156") cut one another, and in which, therefore, all the wave
functions which belong to the sets (15) agree in phase ? The answer
is: There exists a point of agreeing phase, but 1t is not the common
intersection of the surfaces of set (15°), for such does no¢ exist at any
subsequent arbitrary time. Moreover, the point of phase agreement
arises in such @ way that the sets (15) continuously exchange their
representatives given to (15°).

That is shown thus, There must hold

(16) W=, SZ:(BW) oW BW)O _ 6W=(8W)

da,/y Bay  \oa, " Dan \oay/y

simultaneously for the common meeting point of all members of (15')
at any time, because the da,’s are arbitrary within a small region, In
these = + 1 equations, the right-hand sides are constants, and the left
are functions of the n +1 quantities ¢y, ¢p, . . . ¢u, & The equations
are satisfied by the initial system of values, 7.e. by the co-ordinates
of P and the initial time ¢&. For another arbitrary value of ¢, they will
have no solutions in ¢; . . . ¢n, but will more than define the system
of these n quantities.

We may proceed, however, as follows. Let us leave the first
equation, W =W,, aside at first, and define the ¢;’s as functions of
the time and the constants according to the remaining # equations.
Let this point be called @. By it, naturally, the first equation will
not be satisfied, but the left-hand side will differ from the right by a
certain value. If we go back to the derivation of system (16) from
{15’), what we have just said means that though ¢ is not a common
point. for the set of surfaces (15), it is so, however, for a set which
results from (15°), f we alter the right-hand side of equation. (15')
by an amount which is constant for all the surfaces. Let this new
set be (15”). For it, therefore, @ is a common point. The new set
results from (15’), as stated above, by an exchange of the repre-
sentatives in (15). This exchange is occasioned by the alteration
of the constant in (15), by the same amount, for. all representatives.
Hence the phase angle is altered by the same amount for all representa-
tives, The new representatives, 7.e. the members of the set we have
called (15"), which meet in the point @, agree in phase angle just as
the old ones did. This amounts therefore to saying :
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The point @ which is defined as a function of the time by the »

equations :
oW (oW oW (oW

a ~(&) )

50, ~\day )y " B =\

continues t0 be a point of agreeing phase for the whole aggregate of
wave sets (15).

Of all the n-surfaces, of which @ is shown by (17) to be the common
point, only the first is variable; the others remain fixed (only the
first of equations (17) contains the time). The n -1 fixed surfaces
determine the path of the point @ as their line of intersection. It is
easily shown that this line is ‘the orthogonal trajectory of the set
W =const. For, by hypothesis, W satisfies the Hamilton-Jacobi equa-
tion (1) identically in ay, @, . . . an. If we now differentiate the
Hamilton - Jacobi equation with respect to a; (k=2, 3, . . . n),

we get the statement that the normal to a surface, a—zg=const.,

is perpendicular, at every point on it, to the normal of the surface,
W =const., which passes through that point, <.e. that each of the two
surfaces confatns the normal to the other. If the line of intersection
of the n ~1 fixed surfaces (17) has no branches, as is generally the case,
then must each line element of the intersection, as the sole common
line element of the n —1 surfaces, coincide with the normal of the
W-surface, passing through the same point, <.e. the line of intersection
is the orthogonal trajectory of the W-surfaces. Q.E.D,

‘We may sum up the somewhat detailed discussion, which has led us
to equations (17), in a much shorter or (so to speak) shorthand fashion,

as follows: W denotes, apart from a universal constant (%), the

phase angle of the wave function. If we now deal not merely with
one, but with a continuous manifold of wave systems, and if these
are continuously arranged by means of any continuous parameters

a;, then the equations %g-—-const. express the fact that all infinitely

adjacent individuals (wave systems) of this manifold agree in phase.
These equations therefore define the geometrical locus of the points
of agreeing phase. If the equations are sufficient, this locus shrinks
to one point ; the equations then define the point of phase agreement
as a function of the time.

Since the system of equations (17) agrees with the known second
system. of equations of Jacobi, we have thus shown :

The point of phase agreement for certain infinitesimal manifolds of
wave systems, containing n. paramelers, moves according io the same lows
as the tmage point of the mechanical system. '

I consider it a very difficult task to give an exact proof that the
superposition of these wave systers really produces a noticeable
disturbance in only a relatively small region surrounding the point
of phase agreement, and that everywhere else they practically destroy




QUANTISATION AND PROPER VALUES--II 25

one another through interference, or that the abaove statement turns
out to be frue at least for a suitable choice of the amplitudes, and
possibly for a special choice of the form of the wave surfaces. I will
advance the physical hypothesis, which I wish to attach to what is
to be proved, without attempting the proof. The latter will only
be worth while if the hypothesis stands the test of trial and if its
application should require the exact proof.

On the other hand, we may be sure that the region to which the
disturbance may be confined still contains in all directions a great
number of wave lengths. This is directly evident, firstly, because so
long as we are only a few wave lengths distant from the point of phase
agreement, then the agreement of phase is hardly disturbed, as the
interference is still almost as favourable as it is at the point itself.
Secondly, a glance at the three-dimensional Ruclidean case of ordinary
optics is sufficient to assure us of this general behaviour.

What I now categorically conjecture is the following :

The true mechanical process is realised or represented in a fitting
way by the wave processes in g-space, and not by the motion of wmage
pounts in this space. The study of the motion of image points, which
is the object of classical mechanics, is only an approximate treatment,
and has, as such, just as much justification as geometrical oxr “ ray ”
optics has, compared with the true optical process. A macroscopic
mechanical process will be portrayed as a wave signal of the kind
described above, which can approximately enough be regarded as con-
fined to a point compared with the geometrical structure of the path.
We have seen that the same laws of motion hold exactly for such a
signal or group of waves as are advanced by classical mechanics for
the motion of the image point. This manner of treatment, however,
loses all meaning where the structure of the path is no longer very
large compared with the wave length or indeed is comparable with it.
Then we must treat the matter strictly on the wave theory, <.e. we
must proceed from the wave equation and not from the fundamental
equations of mechanics, in order to form a picture of the manifold
of the possible processes. These latter equations are just as useless
for the elucidation of the micro-structure of mechanical processes
as geometrical optics is for explaining the phenomena of diffraction.

Now that a certain interpretation of this micro-structure has been
successfully obtained as an addition to classical mechanics, although
admittedly under new and very artificial assumptions, an interpre-
tation bringing with it practical successes of the highest importance,
it seems to me very significant that these theories—1 refer to the
forms of quantum theory favoured by Sommerfeld, Schwarzschild,
Epstein, and others—bear a very close relation to the Hamilton-
Jacobi equation and the theory of its solution, Z.e. to that form of
.classical mechanics which already points out most clearly the true
undulatory character of mechanical processes. The Hamilton-Jacobi
equation corresponds to Huygens’ Principle (in its old simple form, not
in the form due to Kirchhoff). And just as this, supplemented by
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some rules which are not intelligible in geometrical opties (Fresnel’s
construction of zones), can explain to a great extent the phenomena of
diffraction, so light can be thrown on the processes in the atom by
the theory of the action-function. But we inevitably became involved
in irremovable contradictions if we tried, as was very natural, to
maintain also the idea of paths of systems in these processes; just as
we find the tracing of the course of a light ray to be meaningless, in the
neighbourhood of a diffraction phenomenon.

We can argue as follows. I will, however, not yet give a conclusive
picture of the actual process, which positively cannot be arrived at
from this starting-point but only from an investigation of the wave
equation ; I will merely illustrate the matter qualitatively. Let us
think of a wave group of the nature described above, which in some
way gets into a small closed “‘ path ”’, whose dimensions are of the order
of the wave length, and therefore small compared with the dimensions
of the wave group itself. It is clear that then the “system path ” in
the sense of classical mechanics, 7.e. the path of the point of exact
phase agreement, will completely lose its prerogative, because there
exists a whole continuum of points before, behind, and near the
particular point, in which there is almost as complete phase agreement,
and which describe totally different “ paths”. In other words, the
wave group not only fills the whole path domain all at once but also
stretches far beyond it in all directions.

In this sense do I interpret the * phase waves” which, according
to de Broglie, accompany the path of the electron; in the sense, there-
fore, that no special meaning is to be attached to the electronic path
itself (at any rate, in the interior of the atom), and still less to the position
of the electron on its path. And in this sense I explain the convic-
tion, increasingly evident to-day, firstly, that real meaning has to be
denied to the phase of electronic motions in the atom ; secondly, that
we can never assert that the electron at a definite instant is to be
found on any definite one of the quantum paths, specialised by the
quantum conditions; and thirdly, that the true laws of quantum
mechanics do not consist of definite rules for the single path, but that
in these laws the elements of the whole manifold of paths of a system
are bound together by equations, so that apparently a certain reciprocal
~ action exists between the different paths.?

1t is not incomprehensible that a careful analysis of the experiment-
ally known quantities should lead to assertions of this kind, if the expen-
mentally known facts are the outcome of such a structure of the real
process as is here represented. All these assertions systematically
contribute to the relinquishing of the ideas of * place of the electron ™
and “path of the electron”. If these are not given up, contradictions
remain. This contradiction has been so strongly felt that it has even
been. doubted whether what goes on in the atom could ever be
described within the scheme of space and time. From the philo-

1 Cf. especially the papers of Heisenberg, Born, Jordan, and Dirac quoted later, and
further N. Bohr, Die Naturwissenschafier, January 1926.
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sophical standpoint, I would consider a conclusive decision in this
sense as equivalent to a complete surrender. For we cannot really
alter our manner of thinking in space and time, and what we cannot
comprehend within it we cannot understand at all. There are such
things—but I do not believe that atomic structure is one of them.
From our standpoint, however, there is no reason for such doubt,
although or rather because its appearance is extraordinarily comprehen-
sible. So might a person versed in geometrical optics, after man
attempts to explain diffraction phenomena by means of the idea .of
the ray (trustworthy for his macroscopic optics), which always came to
nothing, at last think that the Laws of Geomeiry are not applicable to
diffraction, since he continually finds that light rays, which he imagines
as rectlinear and independent of each other, now suddenly show, even
in homogeneous media, the most remarkable curvatures, and obviously
mutually influence one another. I consider this analogy as very strict.
Even for the unexplained curvatures, the analogy in the atom is not
lacking—think of the *“ non-mechanical force”, devised for the explana-
tion of anomalous Zeeman effects.

In what way now shall we have to proceed to the undulatory
representation of mechanics for those cases where it is necessary ?
We must start, not from the fundamental equations of mechanics, but
from a wave equation for ¢-space and consider the manifold of processes
possible according to i¢. The wave equation has not been explicitly
used or even put forward in this communication. The only datum for
its construction is the wave velocity, which is given by (6) or (6} as a
function of the mechanical energy parameter or frequency respectively,
and by this datum the wave equation is evidently not uniquely defined.
It is not even decided that it must be definitely of the second order.
Only the striving for simplicity leads us to try this to begin with.
We will then say that for the wave function ¢ we have

(18) | div grad i - 2 =0,

valid for all processes which only depend on the time through a factor
e?rit,  Therefore, considering (6), (6'), and (11), we get, respectively,

p . 8=2
(18" div grad i + -ﬁ-;(kv ~ V=0,
and

" 4 8n?
(187) div grad :,&+~7z—2-—(E—V)1[1=0.

The differential operations are to be understood with regard to the line
element (3). But even under the postulation of second order, the
above is not the only equation consistent with (6). ¥or it is possible
to generalize by replacing div grad ¢ by _

19 Slgs) div (f—(%) grad sb)s

where f may be an arbitrary function of the ¢’s, which must depend in
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some plausible way on E, V(g:), and the coefficients of the line
element (3). (Think, e.g., of f=u.) Our postulation is again dictated
by the striving for simplicity, yet I consider in this case that a wrong
deduction is not out of the question.

The substitution of a partial differential equation for the equations
of dynamics in atomic problems appears at first sight a very doubtful
procedure, on account of the multitude of solutions that such an
equation possesses. Already classical dynamics had led not just to
one solution but to a much too extensive manifold of solutions, viz.
to a continuous set, while all experience seems to show that only a
discrete number of these solutions is realised. The problem of the
quantum theory, according to prevailing conceptions, is to select by
means of the “quantum conditions” that discrete set of actual
paths out of the continuous set of paths possible according to classical
mechanics. It seems to be a bad beginning for a new attempt in this
direction if the number of possible solutions has been ncreased rather
than diminished.

It is true that the problem of classical dynamics also allows itself to
be presented in the form of a partial equation, namely, the Hamilton-
Jacobi equation. But the manifold of solutions of the problem does
not correspond to the manifold of solutions of that equation. An
arbitrary * complete” solution of the equation solves the mechanical
problem completely ; any other complete solution yields the same paths
—they are only contained in another way in the manifold of paths.

Whatever the fear expressed about taking equation (18) as the
foundation of atomic dynamics comes to, I will not positively assert
that no further additional definitions will be required with it. Bus
these will probably no longer be of such a completely strange and
incomprehensible nature as the previous * quantum conditions ”,
but will be of the type that we are accustomed to find in physics with
a partial differential equation as initial or boundary conditions. They
will be, in no way, analogous to the quantum conditions—because in
all cases of classical dynamics, which I have investigated up till now, it
turns out that equation (18) carries within itself the quantum conditions.
It distinguishes in certain cases, and indeed in those where experience
demands 1t, of dself, certain frequencies or energy levels as those
which alone are possible for stationary processes, without any further
assumption, other than the almost obvious demand that, as a
physical quantity, the function ¢ must be single-valued, finite, and
continuous throughout configuration space.

Thus the fear expressed is transformed into its contrary, in any case
in what concerns the energy levels, or let us say more prudently, the
frequencies. (For the question of the * vibrational energy ” stands
by itself ; we must not forget that it is only in the one electron problem
‘that the interpretation as a vibration in real three-dimensional space
is immediately suggested.) The definition of the quantum levels no

1 The introduction of f(g:;) means that not only the « densi'ty ” ‘but also the
* elasticity »* varies with the position.
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longer takes place in two separated stages: (1) Definition of all paths
dynamically possible. (2] Discarding of the greater part of those
solutions and the selection of a few by special postulations; on
the contrary, the quantum levels are at once defined as the proper
values of equation (18), which carries in stself its natural boundary

As to how far an analytical simplification will be effected in this
way in more complicated cases, I have not yet been able to decide.
I should, however, expect so. Most of the analytical investigators
have the feeling that in the two-stage process, described above, there
must be yielded in (1)} the solution of a more complicated problem than
is really necessary for the final result: energy as a (usually) very simple
- rational function of the quantum numbers.  Already, as is known, the
application of the Hamilton-Jacobi method creates a greatsimplification,
as the actual calculation of the mechanical solution is avoided. Tt is
sufficient to evaluate the integrals, which represent the momenta,
merely for a closed complex path of integration instead of for a
variable upper limit, and this gives much less trouble. Still the com-
plete solution of the Hamilton-Jacobi equation must really be known,
1.€. given by quadratures, so that the integration of the mechanical
problem must in principle be effected for arbitrary initial values.
In seeking for the proper values of a differential equation, we must
usually, in practice, proceed thus. We seek the solution, firstly, with-
out regard to boundary or continuity conditions, and from the form
of the solution then pick out those values of the parameters, for
which the solution satisfies the given conditions. Part I supplies
an example of this. We see by this example also, however—what
is typical of proper value problems—that the solution was only
given generally in an extremely inaccessible analytical form [equation
(12} loc. cut.], but that it is extraordinarily simplified for those proper
values belonging to the “natural boundary condition”. I am not
well enough informed to say whether direct methods have now
been worked out for the calculation of the proper values. This
is kmown to be so for the distribution of proper values of kigh order.
But this limiting case is not of interest here; it corresponds to the
classical, macroscopic mechanics. For spectroscopy and atomic
physics, in general just the first 5 or 10 proper values will be of
interest ; even the first alone would be a great result—it defines the
ionisation potential. From the -idea, definitely outlined, that every
problem of proper values allows itself to be treated as one of maxima
and minima without direct reference to the differential equation, it
appears to me very probable that direct methods will be found for
the calculation, at least approximately, of the proper values, as soon
as urgeni need arises. At least it should be possible to test in
individual cases whether the proper values, krnown numerically to all
desired accuracy through spectroscopy, satisfy the problem or not.

I would not like to proceed without mentioning here that at the
present time a research is being prosecuted by Heisenberg, Born,
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Jordan, and other distinguished workers,' to remove the quar tum

difficulties, which has already yielded such noteworthy success that it
cannot be doubted that it contains at least a part of the truth. In
its tendency, Heisenberg’s attempt stands very near the present one,
as we have already mentioned. In its method, it is so totally di.terent
that I have not yet succeeded in finding the connecting link. Iam
distinetly hopeful that these two advances will not fight again: b one
another, but on the contrary, just because of the extraordinary ciffer-
ence between the starting-points and between the methods, that they
will supplement one another and that the one will make progress where
the other fails. The strength of Heisenberg’s programme lies in the
fact that it promises to give the line-inlensities, a question that we
have not approached as yet. The strength of the present attempt—
—if I may be permitted to pronounce thereon—lies in the guiding,
physical point of view, which creates a bridge between the macroscopic
and microscopic mechanical processes, and which makes intelligible the
outwardly different modes of treatment which they demand. For me,
personally, there is a special charm in the conception, mentioned at the
end of the previous part, of the emitted frequencies as “ beats ”,
which T believe will lead to an intuitive understanding of the intensity
formulae.

§ 3. Application to Examples

We will now add a few more examples to the Kepler problem
treated in Part L., but they will only be of the very simplest nature,
since we have provisionally confined ourselves to classical mechanics,
with no magnetic field.?

1. The Planck Oscillator. The Question of Degeneracy

Firstly we will consider the one-dimensional oscillator. Leb the
co-ordinate g be the displacement multiplied by the square root of
the mass. The two forms of the kinetic energy then are

(20) T=1¢ T=ip
The potential energy will be
(21) V(g) =2n%v2g?,

where v, is the proper frequency in the mechanical sense. Then
_equation (18) reads in this case

(22) %+%2(E—2w2v02q2)¢=0.

1 W. Heisenberg, Zischr. f. Phys. 33, p. 879, 1925; M. Born and P. Jordan, ibid. 34,
p- 858, 1925 ; M. Born, W. Heisenberg, and P. Jordan, i¥id. 35, p. 567, 1926 ; P. Dirac,
Proc. Roy. Soc., London, 109, p. 642, 1925, _

2 In relativity mechanics and taking a magnetic field into account the statement
of the Hamilton-Jacobi equation becomes more complicated. In the case of a single
electron, it asserts that the four-dimensional gradient of the action function, diminished
by a given vector (the four-potential), has a constant value. The translation of this
statement intn the language of the wave theory presents a good many difficulties.
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For brevity write

8n2E 162%p,2
(23) 4=, b=-—;:2-"i-
Therefore
29' d2¢‘ b o

(22") d?+.(a- g2 1) =0.
Introduce as independent variable
(24) z=gvb,
and obtain

” dzlll a
(22") - (—‘/—5 ~ 22} =0,

The proper values and functions of this equation are known.! The
proper values are, with the notation used here,

a
25 —=1,3,5...@n+])...
(29) 7 (2n+1)
The functions are the orthogonal functions of Hermate,
(26) e TH, ().
H,(x) means the nth Hermite polynomial, which can be defined as
(27) H{z)=( —1)"6”'%?’
or explicitly by

27  Hoz)=(22)" - ’1(1‘1__;1)(293)1;_2

DB Bty

The first of these polynomials are

(277 Hy(x) =1 H,(z) =2z
Hy(z)=42>-2 Hz)=8z*-12z
Hy(x) =162 - 4822 +12 . . .

Considering next the proper values, we get from (25) and (23)

(25') En =2n 2+ 1

Thus as quantum levels appear so-called ““ half-integral ” multiples of
the “ quantum of energy ” peculiar to the oscillator, i.e. the odd

th; %SO, 1-, 2,' 3, . e

multiples of h—;i’. The intervals between the levels, which' alone are

important for the radiation, are the same as in the former theory. It is
remarkable that our quantum levels are exactly those of Heisenberg’s
theory. In the theory of specific heat this deviation from the previous

1 Cf. Courant-Hilbert, Metkods of Mathematical Physics, i. {Berlin, Springer, 1924),
v. § 9, p. 261, eqn. 43, and further ii. § 10, 4, p. 76.
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theory is not without significance. It becomes important first when
the proper frequency v, varies owing to the dissipation of heat,
Formally it has to do with the old question of the zero-point energy »,
which was raised in connection with the chojce between the first
and second forms of Planck’s Theory. By the way, the additional

term ]-g-“ also influences the law of the band-edges.

The proper functions (26) become, if we reintroduce the original
g from (24) and (23), _

(26') ¢n(q)=e‘%ﬁg"ﬂn(2ﬂg\/%).

Consideration of (27") shows that the first function is a Gaussian
Error-curve; the second vanishes at the origin and for z positive
corresponds to a “ Maxwell distribution of velocities * in two dimen-
sions, and is continued in the manner of an odd function for z negative.
The third function is even, is negative at the origin, and has two

symmetrical zeros at & %, etc. The curves can easily be sketched

roughly and it is seen that the roots of consecutive polynomials
separate one another. From (26') it is also seen that the characteristic
points of the proper functions, such as half-breadth (for =(), zeros,
and maxima, are, as regards order of magnitude, within the range of
the classical vibration of the oscillator. For the. classical amplitude
of the nth vibration is readily found to be given by

VE,. 1 [h [omi1
(28) I ome 2N N 5

Yet there is in general, as far as I see, no definite meaning that can be
attached to the ewact abscissa of the classical turning points in the
graph of the proper function, It may, however, be conjectured, because
the turning points have this significance for the phase space wave,
that, at them, the square of the velocity of propagation becomes
infinite and at greater distances becomes negative. In the differential
equation (22), however, this only means the vanishing of the coefficient
of s and gives rise to no singularities.

I would not like to suppress the remark here (and it is valid
quite generally, not merely for the oscillator), that nevertheless this
vanishing and becoming imaginary of the velocity of propagation
is something which is very characteristic. It is the analytical reason
for the selection of definite proper values, merely through the con-
dition that the function should remain finite. 1 would lke to
illustrate this further. A wave equation with a real velocity of pro-
Pagation means just this : there is an accelerated increase in the value
of the function at all those points where its value is lower than the
average of the values at neighbouring points, and vice versa. Such an
equation, if not immediately and lastingly as in case of the equation
Jor the conduction of heat, yet in the course of time, causes a levelling
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of extreme values and does not permit at any point an excessive
growth of the function. A wave equation with an imaginary velocity
of propagation means the exact opposite : values of the function above
the average of surrounding values experience an accelerated increase
(or retarded decrease), and vice versa. We see, therefore, that a function
represented by such an equation is in the greatest danger of growing
beyond all bounds, and we must order matters skilfully to preserve it
from this danger. The sharply defined proper values are just what
makes this possible. Indeed, we can see in the example treated in
Part 1. that the demand for sharply defined proper values immediately
ceases as soon as we choose the quantity £ to be positive, as this
makes the wave velocity real throughout all space.

After this digression, let us return to the oscillator and ask our-
selves if anything is altered when we allow it two or more degrees of
freedom (space oscillator, rigid body). If different mechanical proper
frequencies (v,-Values) belong to the separate co-ordinates, then nothing
is changed. i is taken as the product of functions, each of a single
co-ordinate, and the problem splits up into just as many separate
problems of the type treated above as there are co-ordinates present.
The proper functions are products of Hermite orthogonal functions,
and the proper values of the whole problem appear as sums of those
of the separate problems, taken in every possible combination. No
proper value (for the whole system) is multiple, if we presume that
there is no rational relation between the vy -values.

If, however, thére is such a relation, then the same manner of
treatment is still possible, but it is certainly not wunigue. Multiple
proper values appear and the ““separation” can certainly be effected
in other co-ordinates, e.g. in the case of the isotropic space oscillator
in spherical polars.t

The proper values that we get, however, are certainly in each
case exactly the same, at least in so far as we are able-to prove the
“ completeness ” of a system of proper functions, obtained in one
way. We recognise here a complete parallel to the well-known relations
which the method of the previous quantisation meets with in the
case of degeneracy. Only In one point there is a not unwelcome
formal difference. If we applied the Sommerfeld-Epstein quantum
conditions without regard to a possible degeneracy then we always
got the same energy levels, but reached different conclusions as to the
paths permitted, according to the choice of co-ordinates.

Now that is not the case here. Indeed we come to a completely
different system of proper functions, if we, for example, treat the
vibration problem corresponding to unperturbed Kepler motion in

1 'We are led thus to an equation in », which may be treated by the method shown
in the Kepler problem of Part 1. Moreover, the one-dimensional oscillator leads to the
same equetion if g* be taken as variable. I originally solved the problem directly in
that way. For the hint that it was a question of Hermite polynomials, I have to thank
Heir E. Fues. The polynomial appearing in the Xepler problem (eqn. 18 of Part 1.)
is the (2n+1)th differential coefficient of the (n+I)th polynomial of Laguerre, as I
subsequently found. ,
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parabolic co-ordinates instead of the polars used in Part I. However,
it is not just the single proper vibration that furnishes a possible state
of vibration, but an arbitrary, finite or infinite, linear aggregate of such
vibrations. And as such the proper functions found i any second
way may always be represented ; namely, they may be represented
as linear aggregates of the proper functions found in an arbitrary
way, provided the latter form a complete system.

The question of how the energy is really distributed among the
proper vibrations, which has not been taken into account here up till
now, will, of course, have to be faced some time, Relying on the former
quantum theory, we will be disposed to assume that in the. degenerate
case only the energy of the set of vibrations belonging to one definite
proper value must have a certain prescribed value, which in the
non-degenerate case belongs to one single proper vibration. I would
like to leave this question still qute open—and also the question
whether the discovered * energy levels” are really energy steps of
the vibration process or whether they merely have the significance of
its frequency. If we accept the beat theory, then the meaning of
energy levels is no longer necessary for the explanation of sharp
emission frequencies.

2. Rotator with Fized Azxis

On account of the lack of potential energy and because of the
Euclidean line element, this is the simplest conceivable example of
vibration theory.. Let 4 be the moment of inertia and ¢ the angle
of rotation, then we clearly obtain as the vibration equation

1 d*s 8n2E
(29) im0,

which has the solution

N

Here the argument must be an integral multiple of ¢, simply because
otherwise s would neither be single-valued nor continuous throughout
the range of the co-ordinate ¢, as we know ¢ +27 has the same signifi-

cance as ¢. This condition gives the well-known result

n2h?
(31) nSgr
In complete agreement with the former quantisation.

No meaning, however, can be attached to the result of the application
to band spectra. For, as we shall learn in a moment, it is a peculiar
fact that our theory gives another result for the rotator with free axis.
And this is true in general. Tt is not allowable in the applications of
wave mechanics, to think of the freedom of movement of the system
as being more strictly limited, in order to simplify calculation, than it
actually is, even when we know from the integrals of the mechanical
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equations that in a single movement certain definite freedoms are
not made use of. For micro-mechanics, the fundamental system of
mechanical equations is absolutely incompetent; the single paths
with which it deals have now no separate existence. A wave process
fills the whole of the phase space. It is well known that even the
number of the dimensions in which a wave process takes place is very

- significant.

3. Rigid Rotator unth Free Axis

If we introduce as co-ordinates the polar angles 8, ¢ of the radius
from the nucleus, then for the kinetic energy as a function of the
momenta we get

; _1 Py’
@ T-ga\p i)
According to its form this is the kinetic energy of a particle constrained
to move on a spherical surface. The Laplacian operator is thus simply
that part of the spatial Laplacian operator which depends on the polar
angles, and the vibration equation (18") takes the following form,

1 0 /. 08 1 0% 8n24E,

(33) 577 (i 055) + sgrt T v=0
The postulation that ¢ should be single-valued and continuous on the
spherical surface leads to the proper value condition

2
(34) %{-‘Eﬂ(nu); n=0,1,2,3, ...

The proper functions are known to be spherical surface harmonics.
The energy levels are, therefore,

, n(n + 1)h2
(34") E,,=-(-8-TT-2-A—)-; n=0,1,2,3, ...

This definition is different from all previous statements (except
perhaps that of Heisenberg ?). Yet, from various arguments from
experiment we were led to put *“ half-integral ”’ values for  in formula
(81). It is easily seen that (34’) gives practically the same as (31) with
half-integral values of n. For

nn+1)=(n+4)2-1.

The discrepancy consists only of a small additive constant ; the level
differences in (34") are the same as are got from “ half-integral quantisa-
tion . This is true also for the application to short-wave bands,
where the moment of inertia is not the same in the initial and final
states, on account of the “ electronic jump ”. For at most a small
constant additional part comes in for all lines of a band, which is
swamped in the large * electronic term ™ or in the * nuclear vibration
term 7. Moreover, our previous analysis does not permit us to speak
of this small part in any more definite way than as, say,

{5~ 2)
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The notion of the moment of inertia being fixed by “ quantun con-
ditions * for electronic motions and nuclear vibrations follows na: arally
from the whole line of thought developed here. We will show m she
next section how we can treat, approximately at least, the . iclear
vibrations and the rotations of the diatomic molecule simultar ously
by a-synthesis of the cases ! considered in 1 and 3.

I should like to mention also that the value n=0 correspon : not
to the vanishing of the wave function ¢ but to a constant vl = for
it, and accordingly to a vibration with amplitude constant c¢v r :he
whole sphere.

4. Non-rigid Rotator (Diatomic Molecule)

According to the observation at the end of section 2, we must : -ate
the problem initially with all the six degrees of freedom that .he
rotator really possesses. Choose Cartesian co-ordinates for the two

molecules, viz. Ty, 1, 215 T, Y, 25, and let the masses be m, and =,
and r be their distance apart. The potential energy is

(35) V =2a%lu(r —1,)%,
where 2= (Zy - 29)* + (Y1~ %2)* + (2 - 2)2
Here
_ My
(36) =+ my

may be called the “resultant mass”. Then v, is the mechanical
proper frequency of the nuclear vibration, regarding the line joining
the nuclei as fixed, and 7, is the distance apart for which the

potential energy is a minimum. These definitions are all in the sense
of the usnal mechanies.

For the vibration equation (18”") we get the following :
N AV e e
(37) ﬁ(ﬁxﬁ Tt azlz) +m2(6x22 METEN 8z22>
2
+ B ~ 2ty )} =0.

Introduce new independent variables z, ¥, z, £, 3, {, where
(38) L= ~Tg; (My +Me)E =M%y + Mo,
Y=Y~ Yz; (Mg +me)n =myy; +msy,
2=2;—2y; (my+mMy){ =Mz +my2,.
The substitution gives
1 /0% 0% o 1 (@__2:_,&

o%p %
37') {; (Ex?*”é‘y‘z "‘“'a‘z'z) * oy v, 5

ot 3)
) +[a" -8 (r—7p)*14 =0,
where for brevity

1 Cf. A: Soramerfeld, Atombau und Spektrallinien, 4th edit., p. 833. We do not
consider here the additional non-harmonic terms in the potential energy.

i Al

A A

¥

b

s

it S




gl o

i e R

QUANTISATION AND PROPER VALUES—II 37
(39) s SmE b,_lﬁir“voz,u..

TR TR

Now we can put for i the product of a function of the relative co-
ordinates z, ¥, z, and a function of the co-ordinates of the centre of mass

&, L

(40) b=f(z,y,2) g (£ 7, 0).
For ¢ we get the defining equation

1 (3% g g ~
(41) m1 +m2(§§5+§{2 + é?) +const. g=0.

This is of the same form as the equation for the motion, under no
forces, of a particle of mass m, +m,. The constant would in this case
have the meaning

2
(42) const. = §%———2E',

where E, is the energy of translation of the said particle. Imagine this
value inserted in (41). The question as to the values of E, admissible as
proper values depends now on this, whether the whole infinite space is
available for the original co-ordinates and hence for those of the centre of
gravity without new potential energies coming in, or not. In the first
case every non-negative value is permissible and everynegative value not
permissible. For when E, is not negative and only then, (41) possesses
solutions which do not vanish identically and yet remain finite in all
space. If, however, the molecule is situated in a “ vessel , then the
latter must supply boundary conditions for the function g, or in other
words, equation (41), on account of the introduction of further potential
energies, will alter its form very abruptly at the walls of the vessel,
and thus a discrete set of E,-values will be selected as proper values.
It is a question of the “ Quantisation of the motion of translation ”,
the main points of which I have lately discussed, showing that it
leads to Einstein’s Gas Theory.?

For the factor f of the vibration function , depending on the relative
co-ordinates z, ¥, z, we get the defining equation '

1/0% o2 o2 -y

(43) ﬁ(a—éfé+@£+5§é)+[a =b'(r - 1)21f =0,

where for brevity we put

2R
(39') o 8E-E) (1;22 By,
We now introduce instead of , y, 2, the spherical polars 7, 8, ¢ (which is
in agreement with the previous use of 7). After multiplying by u we get

N 1O/ 3N\ 11 B/ B\ 1 &
48) s §)+;f{m salcin ) s éF}
+{pa’ —pb'(r —15)*]f=0.

v Physik. Ztschr. 27, p. 95, 1926.
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Now break up f. The factor depending on the angles is a surface
harmonic. Tet the order be n. The curled bracket is —n(n+1) f.
Imagine this inserted and for simplicity let f now stand for the factor
depending on 7. Then introduce as new dependent variable '

(44) x=1f,
and as new sndependent variable
(45) p=7—1,
The substitution gives
0 ¢ g0 Pn+1

(46) k| - - P

To this point the analysis has been exact. Now we will make an
approximation, which I well know requires a stricter justification

than I will give here. Compare (46) with equation (22') treated earlier.
They agree in form and only differ in the coefficient of the unknown

function by terms of the relative order of magnitude of £ This is seen,
0

if we develop thus :
an+1) nn+l)/. 2p 3p?
*0 (ro+p)* 14 (1 7o * T T >’

substitute in (46), and arrange in powers of pfr,. If we introduce for
p & new variable differing only by a small constant, viz.

/ n{n +1)
48) P =p- - :
? 1
IR LCER)
then equation (46) takes the form
’ azx Bt P’ —
(46) (oo [E{:Dx =0,
where we have put
g BT n(n+1)
) R O e ey
, on{n+1
lb =pub’ + (To - ),

The symbol [%] in (46°) represents terms which are small compared with
0

the retained term of the order of ‘;
0
Now we know that the first proper functions of equation (224,
to which we now compare (46'), only differ markedly from zero in
a small range on both sides of the origin. Only those. of higher
order stretch gradually further out. For moderate orders, the domain

for equation (46'), if we neglect the term [:i.-] and bear in mind the
0
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order of magnitude of molecular constants, is indeed small compared
with 7, We thus conclude (without rigorous proof, I repeat), that we
can in this way obtain a useful approximation for the first proper
functions, within the region where they differ at all markedly from
zero, and also for the first proper values. From the proper value
condition (25) and omitting the abbreviations (49), (39'), and (39),
though introducing the small quantity

50) o n(n+1)k2  nfn+1)A®
( = ot iyt~ 6ty id>
instead, we can easily derive the following energy steps,

+1}A2 2l+1
o S B
(n=0,1,2...; 1=0,1,2..)),
where
(52) A=prs?

is still written for the moment of inertia.

In the language of classical mechanics, ¢ is the square of the ratio
of the frequency of rotation to the vibration frequency v,; it is
therefore really a small quantity in the application to the moleculie,
and formula (51) has the usual structure, apart from this small correc-
tion and the other differences already mentioned. It is the synthesis
of (25"} and (34’) to which E, is added as representing the energy of
translation. It must be emphasized that the value of the approxima-
tion is to be judged not only by the smallness of ¢ but also by I not
being too large. Practically, however, only small numbers have to be
considered for I.

The e-corrections in (51) do not yet take account of deviations of the
nuclear vibrations from the pure harmonic type. Thus a comparison
with Kratzer’s formula (vide Sommerfeld, loc. ¢it.) and with experience
is impossible. I only desired to mention the case provisionally, as an
example showing that the intuitive idea of the equilibrium-configuration
of the nuclear system retains its meaning in undulatory mechanics
also, and showing the manner in which it does so, provided that the
wave amplitude ¢ is different from zero practically only in a small
neighbourhood of the equilibrium configuration. The direct interpre-
tation of this wave function of stz variables in tkree-dimensional space
meets, at any rate initially, with difficulties of an abstract nature.

The rotation-vibration-problem of the diatomic molecule will have
to be re-attacked presently, the non-harmonic terms in the energy
of binding being taken into account. The method, selected skilfully
by Kratzer for the classical mechanical treatment, is also suitable
for undulatory mechanics. If, however, we are going to push the
calculation as far as is necessary for the fineness of band structure,
then we must make use of the theory of the perturbation of proper
values and functions, that is, of the alteration experienced by a
definite proper value and the appertaining proper functions of a
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differential equation, when there is added to the coefficient of th
unknown function in the equation a small “ disturbing term . This
“ perturbation theory ” is the complete counterpart of that of classical
mechanics, except that it is simpler because in undulatory mechanies
we are always In the domain of linear relations. As a first approxi-
mation we have the statement that the perturbation of the proper
value is equal to the perturbing term averaged * over the undisturbed
motion .

The perturbation theory broadens the analytical range of the new
theory extraordinarily. As an important practical success, let me
say here that the Stark effect of the first order will be found to be
really completely in accord with Epstein’s formula, which has become
unimpeachable through the confirmation of experience.

Ziirich, Physical Institute of the University.
(Received February 23, 1926.)




