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WAVE MECHANICS

Quantisation as a Problem of
Proper Values (Part I)

(Annalen der Physik (4), vol. 79, 1926)

§ 1. In this paper I wish to consider, first, the simple case of the
hydrogen atom (non-relativistic and unperturbed), and show that the
customary quantum conditions can be replaced by another postulate,
in which the notion of “ whole numbers ”, merely as such, is not intro-
duced. Rather when integralness does appear, it arises in the same
natural way as it does in the case of the node-numbers of a vibrating
string. . The new conception is capable of generalisation, and strikes,
I believe, very deeply at the true nature of the quantum rules.

The usual form of the latter is connected with the Hamilton-Jacobi
differential equation, ‘

() H(g, %*-3)=E

A solution of this equation is sought such as can be represented as the
sum of functions, each being a function of one only of the independent
variables g.

Here we now put for S a new unknown ¢ such that it will appear
as a product of related functions of the single co-ordinates, i.e. we put

) S=Klog .

The constant K must be introduced from -considerations of
dimensions ; it has those of action. Hence we get

‘ : K o
1 Ay, 5 Bq) -E.

Now we do not look for a solution of equation (1°), but proceed as
follows. If we neglect the relativistic variation of mass, equation (1)
can always be transformed so as to become a quadratic form (of ¢y and
its first derivatives) equated to zero. (For the one-electron problem

1-
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& WAVE MECHANICS

this holds even when mass-variation is not neglected.) We now seek
a function ¢, such that for any arbitrary varation of it the integral
of the said quadratic form, taken over the whole co-ordinate space,?
is stationary, ¢ being everywhere real, single-valued, finite, and con-
tinnously differentiable up to the second order. The quantum conditions
are replaced by this variation problem.

First, we will take for H the Hamilton function for Keplerian
motion, and show that 4 can be so chosen for all positive, but only for
a discrete set of megative values of E. That is, the abovée variation
problem has a discrete and a continuous spectrum of proper values.

The discrete spectrum corresponds ‘to the Balmer terms and the
continuous to the energies of the hyperbolic orbits. For numerical
agreement K must have the value 4/2x. _

The choice of co-ordinates in the formation of the variational equa-
tions being arbitrary, let us take rectangular Cartesians. Then (1)
becomes in our case

” O (ONE L (ONE | redNe 2m e2 .
@) G)+@) (@) -B(E Do,
¢=charge, m =mass of an electron, 12 =22 + Y2 +22
Our variation problem then reads

O wesffasaral Q2 (B ()2
the integral being taken over all space. From this we find in the
usual way :

) 187= fdf&,bg%-— [ [dx.dydza¢[vz¢ +§T”:(E+§)¢]=g_

Therefore we must have, firstly,

) v+ (B +Z)p o,
and secondly, .
(6) / arspl~o.

df is an element of the infinite closed surface over which the integral
is taken. _

(It will turn out later that this last condition requires us to
supplement our problem by a postulate as to the behaviour of bl
at infinity, in order to ensure the existence of the above-mentioned
continuous spectrum of proper values.  See later.)

The solution of (5) can be effected, Jor example, in polar co-ordinates,
7, 0, ¢, if ¢ be written as the product of three functions, each only of
7, of 8, or of ¢. The method is sufficiently well known. The function
of the angles turns out to be a surface karmonic, and if that of r be
called x, we get easily the differential equation,

! I am aware this formulation is not entirely unambiguous,
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d*> 2dy (2mE 2me* n(n+1)
0 T (g - Do,

n=0,1,2,3.; .

The limitation of n to integral values is necessary so that the
surface harmonic may be single-valued. We require solutions of (7)
that will remain finite for all non-negative real values of . Now !
equation (7) has two singularities in the complex r-plane, at r=0 and
r =0 , of which the second is an *“ indefinite point ”’ (essential singularity)
of all integrals, but the first on the contrary is not (for any integral).
These two singularities form exactly the bounding points of our real
wnterval. In such a case it is known now that the postulation of the
Jiniteness of y at the bounding points is equivalent to a boundary
condition. The equation has in general no integral which remains
finite at both end points; such an integral exists only for certain
special values of the constants in the equation. It is now a question
of defining these special values. This is the jumping-off point of the
whole investigation.? -

Let us examine first the singularity at r=0. The so-called
wndicial equation which defines the behaviour of the integral at this
point, is

®) plp—1) +2p —n(n +1) =0,
with roots
{8") p1=n, py=—(n+1).

The two canonical integrals at this point have therefore the ex-
ponents # and —(n+1). Since » is not negative, only the first of these
is of use to us. Since it belongs to the greater exponent, it can be re-
presented by an ordinary power series, which begins with #*. (The other
integral, which does not interest us, can contain a logarithm, since the
difference between the indices is an integer.) The next singularity is
at infinity, so the above power series is always convergent and repre-
sents a franscendental integral function. We therefore have established
that :

The required solution is {except for a constant facior) a single-valued
definite transcendental integral funciion, which at r=0 belongs to the
exponeni n. .

We must now investigate the behaviour of this function at infinity
on the positive real axis. To that end we simplify equation (7) by the
substitution

9) x=7*U,

where o i so chosen that the term with 1/r? drops out. It is easy
to verify that then o must have one of the two values n, —{n +1).
Equation (7) then takes the form,

1 For guidance in the treatment of (7) I owe thanks to Hermann Weyl.
? ¥or unproved propositions in what follows, see L. Schlesinger’s Differential
Egquations (Collection Schubert, No. 13, Goschen, 1900, especially chepters 3 and 5).
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, 32U 2a+1)dU 2m
() =+ (“T )?l?""K"-‘ E+5:)U=o.

Its integrals belong at 7=0 to the exponents 0 and ~2a~  for
the a-value, a =n, the first of these integrals, and for the second a- ralue,
a= —(n+1), the second of these integrals is an integral functic and
leads, according to (9), to the desired solution, which is single-x lued.
We therefore lose nothing if we confine ourselves to one of h two
a-values. Take, then, |

(10) a=1n.

Our solution U then, at 7 =0, belongs to the expenent 0. Eguation
(7) is called Laplace’s equation. The general type is

1" 3 (]
(") 0" +(8+ 1)U + (e + 2)U =0.
Here the constants have the values
ImE Ome?
(11) 8,=0, &,=2a+1), e°=—1%—, €= %.

This type of equation is comparatively simple to handle for this reason :
The so-called Laplace’s transformation, which in general leads again
to an equation of the second order, kere gives one of the first. This
allows the solutions of (7") to be represented by complex integrals.
The result * only is given here. The integral

(12) U= f &7(z ez — o)1z
L .
is & solution of (7”) for a path of integration Z, for which
d
(13) [L Ze7(@ — ez ~ag)eldz =0,

The constants ¢, ¢;, ay, a, have the following values. ¢, and ¢,
are the roots of the quadratic equation

(14) 224+ 8¢z +€,=0,
and 5

. _g+dge . +3102_
(14) ay _"1 ~c, Qg == """'—‘cl —c,

In the case of equation (7°) these become, using (11) and (10),

" -2mE -2mE
) o=+ o=\

me_ +n+1 me +n+1
G =m—F——==tn+l, ===t n+l.
VU KN "omE 2" KA -omE

+ +

" The representation by the integral (12) allows us, not only to
survey the asymptotic behaviour of the totality of solutions when 7

1 Cf. Schlesinger. The theory is due to H. Poincaré and J. Horn.
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tends to infinity in a definite way, but also to give an account of this
behaviour for one definile solution, which is always a much more
difficult task.

We shall at first exclude the case where o, and a, are real integers.

When this occurs, it occurs for both quantities simultaneously, and
when, and only when,

(15)

L3

e ~areal integer.
B/ —omE '
4
Therefore we assume that (15) is not fulfilled.

The behaviour of the totality of solutions when r tends to infinity
in a definife manner—we think always of r becoming infinite through
real positive values—is characterised ! by the behaviour of the two
linearly independent solutions, which we will call U, and U,, and
which are obtained by the following specialisations of the path of
integration L. In eack case let z come from infinity and return there
along the same path, in such a direction that
(16) Lm " =0,

Z=> 0
t.e. the real part of 2r is to become negative and infinite. In this way
condition (13) is satisfied. In the one case let z make a circuit once round
the point ¢, (solution U,), and in the otker, round c, (solution U,).

Now for very large real positive values of #, these two solutions
are represented asymplotically (in the sense used by Poincaré) by
(17) Ulﬁ"ec'rf-“'( - 1)“(327&3 bt l)P(al)(cl - 02)‘1‘“1,

| Ua~er=o — Desfers — 1) a,)(c, — 0y) 1,
in which we are content to take the first term of the asymptotic series
of integral negative powers of 7.

We have now to distinguish between the two cases.

1. £>0. This guarantees the non-fulfilment of (15), as it makes the
left hand a pure imaginary. Further, by (14"), ¢; and ¢, also become
pure imaginaries. The exponential functions in (17), since r is real,
are therefore periodic functions which remain finite. The values of
a, and a, from (14") show that both U, and U, tend to zero like r—*-1,
T'his must therefore be valid for our transcendental integral solution U, whose

. behaviour we are investigating, however it may be linearly compounded

Jrom U, and U,. Further, (9) and (10) show that the function y, <.e.
the transcendental integral solution of the original equation (7), always
-tends to zero like 1/r, as it arises from U through multiplication by
", ‘We can thus state :

The Eulerian differential equation (5) of our variation problem has,
Jor every positive E, solutions, which are everywhere single-valued, finite,
and continuous ; and which tend to zero with 1/r at infinity, under con-
tinual oscillations. The surface condition (6) has yet to be discussed.

1 1f (15) is satisfied, at least one of the two paths of integration described in the
text cannot be used, as it yields a vanishing result.

Y ]
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2. E<0. Inthis case the possibility (15) is not eo ipso excluded, yet
we will maintain that exclusion provisionally. Then by (14”) and (17),
for r-> 0 ,U, grows beyond all limits, but U, vanishes exponentially.
Our integral function U (and the same is true for x) will then remam
finite if, and only if, U is identical with U,, save perhaps for a numerical
factor. This, however, can never be, as is proved thus: If a closed
circuit round both points ¢; and ¢, be chosen for the path L, thereby
satisfying condition (13) since the circuit is really closed on the Riemann
surface of the integrand, on account of a, +a, being an integer, then it
is easy to show that the integral (12) represents our integral function
U. (12) can be developed in a series of positive powers of 7, which
converges, at all events, for 7 sufficiently small, and since it satisfies
equation (7’), it must coincide with the series for U. Therefore U is
represented by (12) if L be a closed circuit round both points ¢, and ¢,.
This closed circuit can be so distorted, however, as to make it appear
additively combined from the two paths, considered above, which
belonged to U, and U,; and the factors are non-vanishing, 1 and
g’"’ﬂ. Therefore U cannot coincide with U,, but must contain also U,.

E.D.

Qur integral function U, which alone of the solutions. of (7'} is
considered for our problem, is therefore not finite for  large, on the
above hypothesis. Reserving meanwhile the question of completeness,
i.e. the proving that our treatment allows us to find all the linearly
independent solutions of the problem, then we may state :

For negative values of E which do not satisfy condition (15) our
variation problem has no solution.

We have now only to investigate that discrete set of negative
E-values which satisfy condition {15). «a, and a, are then both integers.
The first of the integration paths, which previously gave us the funda-
mental values U, and U,, must now undoubtedly be modified so as to
give a non-vanishing result. For, since a; 1 is certainly positive, the
point ¢, is neither a branch point nor a pole of the integrand, but an
ordinary zero. The point ¢, can also become regular if a, — 1 is also not
negative. In every case, however, two suitable paths are readily found
and the integration effected completely in terms of known functions,

so that the behaviour of the solutions can be fully investigated.
Let

mez
15’ —=[; 1=1,2,3,4...
(15 K+ -2mE ’ ¢
Then from (14") we have
(14") a;~1=l+n, ay-1=-l+n.

Two cases have to be distinguished : [<n and I>n.

(@) 1<n. Then ¢, and ¢, lose every singular character, but instead
become starting-points or end-points of the path of integration, in order
to fulfil condition (13). A third characteristic point here is at infinity
(negative and real). Every path between two of these three points

yields a solution, and of these three solutions there are two linearly in-
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dependent, as is easily confirmed if the integrals are calculated out. In
particular, the transcendental integral solution is given by the path from
¢, to ¢;.  That this integral remains regular at r =0 can be seen at once
without calculating it. I emphasize this point, as the actual calculation
is apt to obscure it. However, the calculation does show that the
integral becomes indefinitely great for positive, infinitely great values
of 7. One of the other two integrals remains finite for r large, but it
becomes infinite for =0.

Therefore when [ <n we get no solution of the problem. :

() I>n. Then from (14'"), ¢; is a zero and ¢, a pole of the first order
at least of the integrand. Two independent integrals are then obtained:
one from the path which leads from z= — o to the zero, intentionally
avoiding the pole; and the other from the residue at the pole. The
latter is the integral function. We will give its calculated value,
but multiplied by #*, so that we obtain, according to (9) and (10), the
solution x of the original equation (7). (The multiplying constant is
arbitrary.) We find '

vV -2mE e Y - 2x) 1+
18) x=f(rYg™); fw)=w 2
It is seen that this is a solution that can be utilised, since it remains
finite for all real non-negative values of . In addition, it satisfies the
surface condition (6) because of its vanishing exponentially at infinity.
Collecting then the results for E negative :

For K negative, our variation problem has solutions if, and only if,
E satisfies condition (15). Only values smaller than 1 (and there s
always at least one such at our disposal) can be given to the integer n,
which denotes the order of the surface harmonic appearing in the equation.
The port of the solution depending on r 1s given by (18).

Taking into account the constants in the surface harmonic (known
to be 2n +1 in number), it is further found that :

The discovered solution has exactly 2n +1 arbitrary constants for any
permissible (n, 1) combination ; and therefore for a prescribed value of 1
has I? arbitrary constants.

‘We have thus confirmed the main points of the statements originally
made about the proper-value spectrum of our variation problem, but
there are still deficiencies.

Firstly, we require information as to the completeness of the
collected system of proper functions indicated above, but I will not
concern myself with that in this paper. From experience of -similar
cases, it may be supposed that no proper value has escaped us.

Secondly, it must be remembered that the proper functions,
ascertained for E positive, do not solve the variation problem as
originally postulated, because they only tend to zero at infinity as 1/r,
and therefore oys/or only tends to zero on an infinite sphere as 1/r2.
Hence the surface integral (6) is still of the same order as 6y at infinity.
If it is desired therefore to obtain the continuous spectrum, another
condition must be added to the problem, viz. that & is to vanish at
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infinity, or at least, that it tends to a constant value independent of
the direction of proceeding to infinity ; in the latter case the surface
harmonics cause the surface integral to vanish.

§ 2. Condition (15) yields

me?
(19) —E;=2—I—I~——2lz-
Therefore the well-known Bohr energy-levels, corresponding to the

Balmer terms, are obtained, if to thé constant K, introduced into (2)
for reasons of dimensions, we give the value

h
(20) K= 57
from which comes
(19') S R

Our [ is the principal quantum number. n+1 is analogous to the
azimuthal quanturm number. The splitting up of this number through
a closer definition of the surface harmonic can be compared with the
resolution of the azimuthal quantum into an “ equatorial” and a
% polar” quantum. These numbers here define the system of node-
lines on the sphere. Also the “radial quantum number ” 1-n—1
gives exactly the number of the © node-spheres ”, for it is easily
established that the function f(z) in (18) has exactly I-n~1 positive
real roots, The positive E-values correspond to the continuum of
the hyperbolic orbits, to which one may ascribe, in a certain sense, the
radial quantum number . The fact corresponding to this is the
Pproceeding to infinity, under continual oscillations, of the functions in
question.

It is interesting to note that the range, inside which the functions
of (18) differ sensibly from zero, and outside which their oscillations die
away, is of the general order of magnitude of the major axis of the
ellipse in each case. The factor, multiplied by which the radius
vector enters as the argument of the constant-free function f, is—
naturally—the reciprocal of a length, and this length is

21) K __Ei__M _a
v —9mE me® 4xnimed: 1

where a;= the semi-axis of the Ith elliptic orbit. (The equations follow

from (19) plus the known relation E,=%:—;).

The quantity (21) gives the order of magnitude of the range of the
roots when [ and 7 are small; for then it may be assumed that the
roots of f(z) are of the order of unity. That is naturally no longer the
case if the coefficients of the polynomial are large numbers. At present
I will not enter into a more exact evaluation of the roots, though I
believe it would confirm the above assertion pretty thoroughly.

T A & D S B e
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§3. It is, of course, strongly suggested that we should try to
connect the function ¢ with some vibration process in the atom, which
would more nearly approach reality than the electronic orbits, the real
existence of which is being very much questioned to-day. I originally
intended to found the new quantum conditions in this more intuitive
manner, but finally gave them the above neutral mathematical form,
because it brings more cleazly to light what is really essential. The
essential thing seems to me to be, that the postulation of “whole
numbers ’ no longer enters into the quantum rules mysteriously, but
that we have traced the matter a step further back, and found the
“ integralness * to have its origin in the finiteness and single-valuedness
of a certain space function. ,

1 do not wish to discuss further the possible representations of the
vibration process, before more complicated cases have been calculated
successfully from the new stand-point. It is not decided that the
results will merely re-echo those of the usual quantum theory. For
example, if the relativistic Kepler problem be worked out, it is found
to lead in a remarkable manner to half-integral partial quanta (radial
and azimuthal).

Still, a few remarks on the representation of the vibration may be
permitted. Above all, I wish to mention that I was led to these
deliberations in the first place by the suggestive papers of M. Louis de
Broglie,* and by reflecting over the space distribution of those  phase
waves ”, of which he has shown that there is always a whole number,
measured along the path, present on each period or quasi-period of
the electron. The main difference is that de Broglie thinks of pro-
gressive waves, while we are led to stationary proper vibrations if
we interpret our formulae as representing vibrations. I have lately
shown 2 that the Einstein gas theory can be based on the considera-
tion of such stationary proper vibrations, to which the dispersion law
of de Broglie’s phase waves has been applied. The above reflections
on the atom could have been represented as a generalisation -from
those on the gas model.

If we take the separate functions (18), multiplied by a surface
harmonic of order n, as the description of proper vibration pro-
cesses, then the quantity-E must have something to do with the
related frequency. Now in vibration problems we are accustomed to
the * parameter ” (usually called A) being proportional to the square
of the frequency. However, in the first place, such a statement in
our case would lead to imaginary frequencies for the negative E-values,
and, secondly, instinct leads us to believe that the energy must be

‘proportional to the frequency itself and not to its square.

The contradiction is explained thus. There bas been no natural zero
level laid down for the “ parameter ” & of the variation equation (5),
especially as the unknown function ¢ appears multiplied by a function
of 7, which can be changed by a constant to meet a corresponding

. 1 L. de Broglie, Ann. de Physique (10} 3, p. 22, 1925. (Théses, Paris, 1924.)
2 Physik. Ztschr. 27, p. 95, 1926,
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change in the zero level of E. Consequently, we have to correct our
anticipations, in that not E itself—continuing to use the same termino-
logy—but E increased by a certain constant is to be expected to be
proportional to the square of the frequency. Let this constant be
now very great compared with all the admissible negative E-values
(which are already limited by (15)). Then firstly, the frequencies
will become real, and secondly, since our E-values correspond to only
relatively small frequency differences, they will actually be very approxi-
mately proportional to these frequency differences. This, again, is all
that our ““ quantum-instinet ” can require, as long as the zero level of
energy is not fixed. '

The view that the frequency of the vibration process is given by

(22) v=C’VO+E=C”\/5+§7—- .,

where C is a constant very great compared with all the E’s, has still
another very appreciable advantage. It permits an understanding of
the Bokr frequency condition. According to the latter the emission
Jrequencies are proportional to the E-differences, and therefore from
(22) also to the differences of the proper frequencies v of those
hypothetical vibration processes. But these proper frequencies are all
very great compared with the emission frequencies, and they agree very
closely among themselves. The emission frequencies appear therefore
as deep “ difference tones” of the proper vibrations themselves. It
is quite conceivable that on the tramsition of energy from one to
another of the normal vibrations, something—I mean the light wave—
with a frequency allied to each frequency difference, should make its
appearance. One only needs to imagine that the light wave is causally
related to the beats, which necessarily arise at each point of space
during the transition ; and that the frequency of the light is defined
by the number of times per second the intensity maximum of the
beat-process repeats itself.

It may be objected that these conclusions are based on the relation
(22), in its approzimate form (after expansion of the square root), from
which the Bohr frequency condition itself seems to obtain the nature
of an approximation. This, however, is merely apparently so, and it
is wholly avoided when the relativistic theory is developed and makes

- a profounder insight possible. The large constant C is naturally very
intimately connected with the rest-energy of the electron (me?). Also
the seemingly new and independent introduction of the constant %
(already brought in by (20)), into the frequency condition, is cleared
up, or rather avoided, by the relativistic theory. But unfortunately
the correct establishment of the latter meets right away with certain
difficulties, which have been already alluded to.

- It is bardly necessary to emphasize how much more congenial
it would be to imagine that at a quantum transition the energy-
changes over from one form of vibration to another, than to think
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of a jumping electron. The changing of the vibration form ecan
take place continuously in space and time, and it can readily last as
long as the emission process lasts empirically (experiments on canal
rays by W. Wien); nevertheless, if during this transition the atom
is placed for a comparatively short time in an electric field which alters
the proper frequencies, then the beat frequencies are immediately
changed sympathetically, and for just as long as the field operates.
It is known that this experimentally established fact has hitherto
presented the greatest difficulties. See the well-known attempt at a
solution by Bohr, Kramers, and Slater.

Let us not forget, however, in our gratification over our progress in
these matters, that the idea of only one proper vibration being excited
whenever the atom does not radiate—if we must hold fast to this
idea—is very far removed from the natural picture of a vibrating
system. We know that a macroscopic system does not behave like
that, but yields in general a pot-pourri of its proper vibrations. But
we should not make up our minds too quickly on this point. A
pot-pourrs of proper vibrations would also be permissible for a single
atom, since thereby no beat frequencies could arise other than those
which, according to experience, the atom is capable of emitting
occasionally. The actual sending out of many of these spectral lines
simultaneously by the same atom does not contradict experience. It
is thus conceivable that only in the normal state (and approximately
in certain “ meta-stable ’ states) the atom vibrates with one proper
frequency and just for this reason does not radiate, namely, because no
beats arise. The stimulation may consist of a simultaneous excitation
of one or of several other proper frequencies, whereby beats originate
and evoke emission of light.

Under all circumstances, 1 believe, the proper functions, which
belong to the same frequency, are in general all simultaneously stiru-
lated. Multipleness of the proper values corresponds, namely, in the
language of the previous theory to degemeration. To the reduction
of the quantisation of degenerate systems probably corresponds the

arbitrary partition of the energy among the functions belonging to
one proper value.

- Addation at the proof correction on 28.2.1926.

In the case of conservative systems in classical mechanics, the
variation problem can be formulated in a neater way than was previously
shown, and without express reference to the Hamilton-Jacobi differ-
ential equation. Thus, let T (g, p) be the kinetic energy, expressed
as a function of the co-ordinates and momenta, ¥ the potential energy,
and dr the volume element of the space, *“ measured rationally ”, ¢.e.
it is not simply the produet dg, dg, dg, . . . dgn, but this divided by
the square root of the discriminant of the quadratic form T (g, p).
(Cf. Gibbs’ Statistical Mechanics.) Then let ¢ be such as to make the
“ Hamilton integral ”
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0
) far {Kzr(g, ﬁg‘ﬁ) +¢=V}
stationary, while fulfilling the normalising, accessory condition
(24) f Jdr=1.

The proper values of this variation problem are then the siationary

values of integral (23) and yield, according to our thesis, the qguantum-
levels of the energy.

Tt is to be remarked that in the quantity a, of (14") we have
essentially the well-known Sommerfeld expression —%+ 2/C. (CL
Atombau, 4th (German) ed., p. 775.)

Physical Institute of the University of Ziinch.
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