Quantisation as a Problem of
Proper Values (Part III)

PerrUrBATION THEORY, WITH APPLICATION TO TRE STARK EFFECT
oF THE BALMER LiINES

(Annalen der Physik (4), vol. 80, 1926)
Introduction. Abstract

As has already been mentioned at the end of the preceding paper,?
the available range of application of the proper value theory can by
comparatively elementary methods be considerably increased beyond
the *“directly soluble problems’; for proper values and functions
can readily be approximately determined for such boundary value
problems as are sufficiently closely related to a directly soluble
problem. In analogy with ordinary mechanics, let us call the method
in question the perturbation method. It is based upon the important
property of continuity possessed by proper values and functions,?
principally, for our purpose, upon their continuous dependence on
the coefficients of the differential equation, and less upon the extent
of the domain and on the boundary conditions, since m cur case the
domain (“ entire g-space ”’) and the boundary conditions (* remaining
finite ’) are generally the same for the unperturbed and perturbed
problems.

The method is essentially the same as that used by Lord Rayleigh
in investigating 2 the vibrations of a string with small inhomogeneities
in his Theory of Sound (2nd edit., vol. i., pp. 115-118, London, 1894).
This was a particularly simple case, as the differential equation of
the unperturbed problem had constant coefficients, and only the per-
turbing terms were arbitrary functions along the string. A complete
generalisation is possible not merely with regard to these points, but
also for the specially important case of several independent variables,
1.e. for parfial differential equations, in which mulitple proper values
appear in the unperturbed problem, and where the addition of a

1 Last two paragraphs of Part II.

2 Courant-Hilbert, chap. vi. §§ 2, 4, p. 337.
3 Courant-Hilbert, chap. v. § 5, 2, p. 241.
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perturbing term causes the splitiing up of such values and is of the
greatest interest in well - known spectroscopic questions (Zeeman
effect, Stark effect, Multiplicities). In the development of the pex-
turbation theory in the following Section 1., which really yields nothing
new to the mathematician, I put less value on generalising to the
widest possible extent than on bringing forward the very simple
rudiments in the clearest possible manner. From the latter, any
desired generalisation arises almost automatically when needed. In
Section II., as an example, the Stark effect is discussed and, indeed,
by two methods, of which the first is analogous to Epstein’s method, by
which he first solved! the problem on the basis of classical mechanics,
supplemented by quantum conditions, while the second, which is much
more general, is analogous to the method of secular perturbations.?
The first method will be utilised to show that in wave mechanics also
the perturbed problem can be “separated” in parabolic co-ordinates,
and the perturbation theory will first be applied to the ordinary
differential equations into which the original vibration equation is
split up. The theory thus merely takes over the task which on the
old theory devolved on Sommerfeld’s elegant complex integration for
the calculation of the quantum integrals.® In the second method, it
is found that in the case of the Stark effect an exact separation co-
ordinate system exists, quite by accident, for the perturbed problem
also, and the perturbation theory is applied directly to the partial
differential equation. This latter proceeding proves to be more
troublesome in wave mechanics, although it is theoretically superior,
being more capable of generalisation.

Also the problem of the intensity of the components in the Stark
effect will be shortly discussed in Section II. Tables will be calculated,
which, as a whole, agree even better with experiment than the well-
known ones caleulated by Kramers with the help of the corre-
spondence principle.?

The application (not yet completed) to the Zeeman effect will
naturally be of much greater interest. It seems to be indissolubly
linked with a correct formulation in the language of wave mechanies
of the relativistic problem, because in the four-dimensional formulation
the vector-potential automatically ranks equally with the scalar. It
was already mentioned in Part I. that the relativistic hydrogen atom
may indeed be treated without further discussion, but that it leads to
“ half-integral ” azimuthal quanta, and thus contradicts experience.
Therefore “ something must still be missing ”. Since then I have
learnt what is lacking from the most important publications of G. E.
Uhlenbeck and S. Goudsmit,® and then from oral and written com-
munications from Paris (P. Liangevin) and Copenhagen (W. Pauli),

1 P, 8. Epstein, Ann. d. Phys. 50, p. 489, 1916,

* N. Bohr, Kopenhagener Akademie (8), IV., 1, 2, p. 69 ef seq., 1918.

3.A, Sommerfeld, Afombau, 4th ed., p. 772. -

4 H. A. Kramers, Kopenhagener Akademie (8), III., 3, p. 287, 1819.

5 G. E. Uhlenbeck and S. Goudsmit, Physica, 1925: Die Naturwissenschaften,
1026 ; Nature, 20th Feb., 1926 ; cf. also L. H. Thomas, Nature, 10th April, 1926.
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viz., in the language of the theory of electronic orbits, the angular
momentum of the electron round its axis, which gives it a magnetic
moment. The utterances of these investigators, together with two highly
significant papers by Slater* and by Sommerfeld and Unséld 2 dealing
with the Balmer spectrum, leave no doubt that, by the introduction
of the paradoxical yet happy conception of the spinning electron, the
orbital theory will be able to master the disquieting difficulties which
have latterly begun to accumulate (anomalous Zeeman effect ; Paschen-
Back effect of the Balmer lines ; irregular and regular Réntgen doublets;
analogy of the latter with the alkali doublets, etc.). We shall be obliged
to attempt to take over the idea of Uhlenbeck and Goudsmit into wave
mechanics. 1 believe that the latter is a very fertile soil for this idea,
since in it the electron is not considered as a point charge, but as
continuously flowing through space,® and so the unpleasing conception
of a “ rotating point-charge ” is avoided. In the present paper, how-
ever, the taking over of the idea is not yet attempted.

To the third section, as *‘ mathematical appendix ”, have been
relegated numerous uninteresting calculations—mainly quadratures
of products of proper functions, required in the second section. The

Jormulae of the appendiz are numbered (101), (102), ete.

I. PerrurBATION THEORY
§ 1. A Single Independent Variable

Let us consider a linear, homogeneous, differential expression of the
second order, which we may assume to be in self-adjoint form without
loss of generality, viz.

(1) Liyl=py"+py —qy.

y is the dependent function ; p, p’ and ¢ are continuous functions of the
independent variable = and p=0. A dash denotes differentiation with
respect to = (p’ is therefore the derivative of p, which is the condition
for self-adjointness).

Now let p(z) be another continuous function of =, which never
becomes negative, and also in general does not vanish. We consider
the proper value problem of Sturm and Liouville,*

(2) L{yl+ Epy =0.

It is a question, first, of finding all those values of the constant E
(“ proper values ) for which the equation (2) possesses solutions y(x),
which are continuous and not identically vanishing within a certain
domain, and which satisfy certain * boundary conditions’ at the
bounding points; and secondly of finding these solutions (“ proper

1 J. C. Slater, Proc. Amer. Nat. Acad, 11, p. 732, 1926.

z A, Sommerfeld and A. Unséld, Ztschr. f. Phys. 86, p. 259, 1926,
3 Cf. last two pages of previouns paper.

$ Cf. Courant-Hilbert, chap. v. § 5, 1, p. 238 ef seg.
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functions ”’) themselves. In the cases treated in atomic mechanics,
domain and boundary conditions are always *“ natural”*. The domain,
for example, reaches from 0 to o, when 2 signifies the value of the
radius vector or of an intrinsically positive parabolic co-ordinate,
and the boundary conditions are in these cases : remaining finite. Or,
when 7 signifies an azimuth, then the domain is the interval from
0 to 2o and the condition is : Repetition of the initial values of y and ¥’
at the end of the interval (“ periodicity ). '

- It is only in the case of the periodic condition that multiple, viz.
double-valued, proper values appear for one independent variable, By
this we understand that to the same proper value belong several
(in the particular case, two) linearly independent proper functions.
We will now exclude this case for the sake of simplicity, as it attaches
itself easily to the developments of the following paragraph. More-
over, to lighten the formulae, we will not expressly take into account
in the notation the possibility that a “ band spectrum ” (i.e. a con-
tinuum of proper values) may be present when the domain extends to
infinity.

Let now y=uy(z), i=1,2, 3, . . ., be the series of Sturm-Liouville
proper functions ; then the series of functions w(z)v/p(z), 1 =1,2,8,.. .,
forms a complete orthogonal system for the domain ; s.e. in the first
place, if uiz) and wyz) are the proper functions belonging to the
values E; and E;, then

3) [ o(@)ui z)ur(z)dz =0 for i +F.

(Integrals without limits are to be taken over the domain, throughout
this paper.) The expression “ complete ™ signifies that an originally
arbitrary continuous function is condemned to vanish identically, by
the mere postulation that it must be orthogonal with respect to all the
functions wi(z)vVp(z). (More shortly: “ There exists no further ortho-
gonal function for the system.”) We can and will always regard the
proper functions ;(z) in all general discussions as ‘ normalised ”, 4.e.
we Imagine the constant factor, which is still arbitrary in each of
them on account of the homogeneity of (2), to be defined in suck a way
that the integral (3) takes the value unity for i=%. Finally we again
remind the reader that the proper values of (2) are certainly all real.
Let now the proper values E; and functions wi(z) be known. Let
us, from now on, direct our attention specially to a definite proper
value, Ej say, and the corresponding function ux(x), and ask how these
alter, when we do not alter the problem in any way other than by
adding to the left-hand side of (2) a small  perturbing term ”, which
we will initially write in the form
(4) - M (2)y.
In this A is a small quantity (the perturbation parameter), and r(z)
1s an arbitrary continuous function of z. It is therefore simply a
matter of a slight alteration of the coefficient ¢ in the differential
expression (1). From the continuity properties of the proper quantities,
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mentioned in the introduction, we now know that the altered Sturm-
‘Liouville problem

(2) . Liy]-Ary + Epy=0

- must have, in any case for a sufficiently small A, proper quantities in
the near neighbourhood of B and w;, which we may write, by way
of trial, as

(5) E* =E; +A€§ ;o =u;,.(:r:)- +A‘1‘.’];('$).

On substituting in equation (2'), remembering' that w; satisfies (2),
neglecting A* and cutting away a factor A we get

(6) L[?Jk] + E;,pv,-, = (T - ka)uk.

For the defining of the perturbation v of the proper Junction, we
thus obtain, as a comparison of (2) and (6) shows, a non-homogeneous
equation, which belongs precisely to that homogeneous equation which
is satisfied by our unperturbed proper function u; (for in (6) the
special proper value E, stands in place of E). On the right-hand
side of this non-homogeneous equation occurs, in addition to known
quantities, the still unknown perturbation ¢, of the proper value.

This occurrence of ¢ serves for the calculation of this quantity
before the calculation of v;. It is known that the non-homogeneous
equation—and this is the starting-point of the whole perturbation theory
—for a proper value of the homogeneous equation possesses a solution
when, and only when, its right-hand side is orthogonal! to the allied
proper function (to all the allied functions, in the case of multiple
proper values). (The physical interpretation of this mathematical
theorem, for the vibrations of a string, is that if the force is in
resonance with a proper vibration it must be distributed in a very
special way over the string, namely, so that it does no work in
the vibration in question ; otherwise the amplitude grows beyond all
limits and a stationary condition is impossible.)

The right-hand side of (6) must therefore be orthogonal to w,
e .

™ [~ apmdz=o,
or
[ rugide
() €= ’
[ pu;fdx
or, if we imagine u; already normalised, then, more simply,
(7") €= f rugtdz.

This simple formula expresses the perturbation- of the proper value
(of first order) in terms of the perturbing function 7(z) and the un-
perturbed proper function ui(z). If we consider that the proper

1 Cf. Courant-Hilbert, chap. v. §10, 2, p. 271,
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value of our problem signifies mechanical energy or is analogous to
it, and that the proper function u; is comparable to ‘“motion with
energy Ej”, then we see in (7”) the complete parallel to the well-
known theorem in the perturbation theory of classical mechanics,
viz. the perturbation of the energy, to a first approximation, is equal
to the perturbing function, averaged over the unperturbed motion.
(It may be remarked in passing that it is as a rule senmsible, or
at least aesthetic, to throw into bold relief the factor p(z) in the
integrands of all integrals taken over the entire domain. If we do this,

then, in integral (77), we must speak of ;% and not r{x) as the perturb-
ing function, and make a corresponding change in the expression (4).
Since the point is quite unimportant, however, we will stick to the
notation already chosen.)

We have yet to define v;(z), the perturbation of the proper function,
from (6). We solve! the non-homogeneous equation by putting for v
a series of proper functions, viz.

® w(z)= Z yun(a),

and by developing the right-hand side, divided by p(x), likewise in &
series of proper functions, thus

{9} (E-E-% - ek)uk(a;) = El CriuiT),
where
Cpi= [ (r — exp)ugudx

(10) = [ rupude for 1k

=0 for 1 =E.

The last equality follows from (7). If we substitute from (8) and (9)
in (6) we get

o o
(11) _EI'J’H(L[%&] + Ezpus) =.§1 Cripi.
Since now u; satisfies equation (2) with E = E;, it follows that
(12] __21 'yhp(E 1 Ei)m = .21 Cripthi.

By equating coefficients on left and right, all the s, except yu, are
defined. Thus

s f ruguds .
(13) VH= T F,~ B._F, for i %k,

while yu, as may be understood, remains completely undefined.
This indefiniteness corresponds to the fact that the postulation of

! ¢f. Courant-Hilbert, chap. v. § 5, 1, p. 240, and § 10, p. 279.
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normalisation is still available for us for the perturbed ; oper
function. If we make use of (8) in (5) and claim for u*(x) thi svme
normalisation as for ) (quantities of the order of A? L ng
neglected), then it is evident that v =0. Using (13) we now jbtain
for the perturbed proper funciion

@ u{T) frugude
%k — d .
(14) uy; (:c)-u;,(x)+)ti§1 y—y
(The dash on the sigma denotes that the term ¢=% has no* - be
taken.) And the allied perturbed proper value is, from the above,

(15) E*=Ep4) [ rutd.

By substituting in (2') we may convince ourselves that (14) and (i5)
do really satisfy the proper value problem to the proposed degrec of
approximation. This verification is necessary since the developn.cat,
assumed in (5), in sntegral powers of the perturbation parameter is no
necessary consequence of continuity.

The procedure, here explained in fair detail for the simplest case,
is capable of generalisation in many ways. In the first place, we can
of course consider the perturbation in a quite similar manner for the
second, and then the third order in A, etc., in each case obtaining first
the next approximation to the proper value, and then the correspond-
ing approximation for the proper function. In certain circumstances
it may be advisable—just as in the perturbation theory of mechanics—
to regard the perturbation function itself as a power.series in A, whose
terms come into play one by one in the separate stages. These
questions are discussed exhaustively by Herr E. Fues in work which
is now appearing in connection with the application to the theory of
band spectre.

In the second place, in quite similar fashion, we can consider also
a perturbation of the term in y’ of the differential operator (1) just
as we have considered above the term —gy. The case is important,
for the Zeeman effect leads without doubt to a perturbation of this
kind—though admittedly in an equation with several independent
variables. Thus the equation loses its self-adjoint form by the per-
turbation—not an essential matter in the case of a single variable.
- In a partial differential equation, however, this loss may result in the
perturbed proper values no longer being real, though the perturbing
term is real ; and naturally also conversely, an imaginary perturbing
term may have a real, physically intelligible perturbation as its
consequence. :

We may also go further and consider a perturbation of the term
in y°. Indeed it is quite possible, in general, to add an arbitrary
“ infinitely small ”” linear ! and homogeneous differential operator, even
of higher order than the second, as the perturbing term and to calculate
the perturbations in the same manner as above. In these cases,

? Even the limitation * linear ” is not absolutely necessary.
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however, we would use with advantage the fact that the second and
higher derivatives of the proper functions may be expressed by
means of the differential equation itself, in terms of the zero and first
derivatives, so that this general case may be reduced, in a certain
sense, to the two special cases, first considered—vperturbation of the
terms in y and ¥'.

Fipally, it is obvious that the extension to equations of order
higher than the second is possible.

Undoubtedly, however, the most important generalisation is that
to several independent variables, ¢.e. to partial differential equations.
For this really is the problem in the general case, and only in
exceptional cases will it be possible to split up the disturbed partial
differential equation, by the introduction of suitable variables, into
separate differential equations, each only with one variable.

§ 2. Several Independent Variables (Partial Differential Equation)

We will represent the several independent variables in the formulae
symbolically by the one sign z, and briefly write [ dz (instead of
[ ce. / dz,dz, . . .) for an integral extending over the multiply-

dimensioned domain. A notation of this type is already in use in the
theory of integral equations, and has the advantage, here as there,
that the structure of the formulae is not altered by the increased
number of variables as such, but only by essentially new occurrences,
which may be related to it. , :

Let therefore L{y] now signify a self-adjoint partial linear differential
expression of the second order, whose explicit form we do not require
to specify ; and further let p(x} again be a positive function of the
independent variables, which does not vanish in general. The postula-
tion “ self-adjoint ” is now no Jonger unimportant, as the property
cannot now be generally gained by multiplication by a suitably chosen
J (%), as was the case with one variable. In the particular differential
expression of wave mechanics, however, this is still the case, as it
arises from a variation principle.

According to these definitions or conventions, we can regard
equation (2) of § 1,

(2) Ly} + Epy =0,

as the formulation of the Sturm-Liouville proper value problem in
the case of several variables also. Everything said there about the
proper values and functions, their orthogonality, normalisation, ete.,
as also the whole perturbation theory there developed—in short, the
whole of § 1 —remains valid without change, when all the proper values
are simple, if we use the abbreviated symbolism just agreed upon
above. And only one thing does not remain valid, namely, that they
must be simple.
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Nevertheless, from the pure mathematical standpoint, the case
when the roots are all distinet is to be regarded as the general case
for several variables also, and multiplicity regarded as a special
occurrence, which, it is admitted, ¢s the rule in applications, on account
of the specially simple and symmetrical structure of the differential
expressions L[y] (and the “boundary conditions”) which appear.
Multipheity of the proper values corresponds to degemeracy in the
theory of conditioned periodic systems and is therefore especially
interesting for quantum theory.

A proper value E;is called a-fold, when equation (2), for E = E;,
possesses not one but exactly a linearly independent solutions which
satisfy the boundary conditions. We will denote these by

(16) Ukys Ukpy « « « Ukae

Then it is true that each of these a proper functions is orthogonal to
each of the other proper functions belonging to another proper value
(the factor p(x) being included; ef. (3)). On the contrary, these a
functions are »of in general orthogonal fo one another, if we merely
postulate that they are o linearly independent proper functions for
the proper value E;, and nothing more. For then we can equally well
replace them by a arbitrary, linearly independent, linear aggregates
(with constant coefficients) of themselves. We may express this
otherwise, thus. The series of functions (16) is initially indefinite to
the extent of a linear transformation (with constant coefficients),
involving a non-vanishing determinant, and such a transformation
destroys, in general, the mutual orthogonality.

But through such a transformation this mutual orthogonality can
always be brought about, and indeed in an infinite number of ways ;
~ the latter property arising because orthogonal transformation does not
destroy the mutual orthogonality. We are now accustomed to include
this simply in normalisation, that orthogonality is secured for all
proper functions, even for those which belong to the same proper
value. We will assume that our wu’s are already normalised in this
way, and of course for each proper value. Then we must have

an { f p(@yupi{ x)upy(z)dz =0 when (%, 7) (&', )
=] when ¥’ =%k, as well as ¢’ =1.

Each of the finite series of proper functions u;;, obtained for constant
k and varying ¢, is then only still indefinite to this extent, that it is
subject to an orthogonal transformation.

We will now discuss, first in words, without using formulae, the
consequences which follow when a perturbing term is added to the
differential equation (2). The addition of the perturbing term wili,
in general, remove the above-mentioned symmetry of the differential
equation, to which the multiplicity of the proper values (or of certain
of them) is due. Since, however, the proper values and functions are
continuously dependent on the coefficients of the differential equation, a
small perturbation causes a group of a proper values, which lie close
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to one another and to Ej, to enter in place of the a-fold proper value
E;. The latter is split up. Of course, if the symmetry is not wholly
destroyed by the perturbation, it may happen that the splitting up
is not complete and that several proper values (still partly multiple)
of, en summa, equal multiplicity merely appear in the place of E;
(* partial removal of degeneracy ).

As for the perturbed proper functions, those a members which
belong to the o values arising from E; must evidently also on
account of continuity lie infinitely near the unperturbed functions
belonging to g, viz. #34; ©=1,2,3 . . . a. Yet we must remember
that the last-named series of functions, as we have established above,
is indefinite to the extent of an arbitrary orthogonal transformation.
One of the infinitely numerous definitions, which may be applied to the
series of functions, 4z ; 1=1, 2, 3 . . . a, will lie infinitely near the
series of perturbed functions; and if the value E; is completely
split up, it will be a quite definite one! For to the separate simple
proper values, into which the value is split up, there belong proper
functions which are quite uniquely defined.

This unique particular specification of the wunperturbed proper
functions (which may fittingly be designated as the * approximations
of zero order ” for the perturbed functions), which is defined by the
nature of the perturbation, will naturally not generally coincide with
that definition of the unperturbed functions which we chanced to
adopt to begin with. Hach group of the latter, belonging to a
definite a-fold proper value E;, will have first to be submitted to an
orthogonal substitution, defined by the kind of perturbation, before
it can serve as the starting-point, the * zero approximation ”, for
a more exact definition of the perturbed proper functions. ke
defining of these orthogonal substitutions—one for each multiple proper
value—is the only essentially mew point that arises because of the
increased number of variables, or from the appearance of multiple
proper values. The defining of these substitutions forms the exact
counterpart to the finding of an approximate separation system for
the perturbed motion in the theory of conditioned periodic systems.
As we will see immediately, the definition of the substitutions can
always be given in a theoretically simple way. It requires, for each
a-fold proper value, merely the principal axes transformation of a
quadratic form of a (and thus of a finite number of) variables.

‘When the substitution has once been accomplished, the calculation
of the approximations of the first order runs almost word for word as
in § 1. The sole difference is that the dash on the sigma in equation
(14) must mean that in the summation all the proper functions
belonging to the value F;, t.e. all the terms whose denominators
would vanish, must be left out. It may be remarked in passing that
it is not at all necessary, in the calculation of first approximations, to
have completed the orthogonal substitutions referred to for all multiple
proper values, but it is sufficient to have done so for the jalue_E;,,
in whose splitting up we are interested. For the approximations
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of higher order, we admittedly require them all. In all other respects,
however, these higher approximations are from the beginning carried
‘out exactly as for simple proper values,

Of course it may bappen, as was mentioned above, that the value
Ey, either generally or at the initial stages of the approximation, is
not completely split up, and that multiplicities (* degeneracies ) still
remain. Thisis expressed by the fact that to the substitutions already
frequently mentioned there still clings a certain indefiniteness, which
either always remains, or is removed step by step in the later
approximations.

Let us now represent these ideas by formulae, and consider as
before the perturbation caused by (4), § 1,

(4) - Ar(z)y,

.. we imagine the proper value problem belonging to (2) solved,
and now consider the exactly corresponding problem (2'),

(2) Liy]-2ry + Epy=0.

We again fix our attention on a definite proper value E; Let
(16) be a system of proper functions belonging to it, which we
assume to be normalised and orthogonal to one another in the sense
described above, but not yet fitted to the particular perturbation in
the sense explained, because to find the substitution that leads o thes
Jitting is precisely our chief task! In place of (5), § 1, we must now
put for the perturbed quantities the following,

(18) E*u = Eg +A€z ; u*u(a:) = 'il K;mki(:b‘) + J\?Jg( a;)

(=1,2,3...a),

wherein the v)(z)’s are functions, and the €’s and the ;s are systems
of constants, which are still to be defined, but which we initially do
not limit in any way, althongh we know that the system of coefficients
x;; moust? form an orthogonal substitution. The index % should still
be attached to the three types of quantity named, in order to indicate
that the whole discussion refers to the kth proper value of the
unperturbed problem. We refrain from carrying this out, in order
to avoid the confusing accumulation of indices. The index % is to
be assumed fized in the whole of the following discussion, until the -
contrary is stated.

Let us select one of the perturbed proper functions and values
by giving & definite value to the index [ in (18), and let us substi-
tute from (18) in the differential equation (2') and aTrange in powers
of A, Then the terms independent of A disappear exactly as in
§ 1, because the unperturbed proper quantities satisfy equation (2),

- 1 It follows from the gemeral theory that the perturbed system of functions
u¥*y(z) must be orthogonal if the perturbation completely removes the degeneracy,
and may be assumed orthogonal although that is not the case.
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by hypothésis. Only terms containing the first power of A remain,
as we can strike out the others. Omitting a factor A, we get

(19) L[?Jz] + E],p‘vz = '%1 Kzi(?' - ezp)uh-,

and thus obtain again for the definifion of the perturbation v; of
the functions a non-homogeneous equation, to which corresponds as
homogeneous equation the equation (2), with the particularvalue £ = E;,
i.¢. the equation satisfied by the set of functions wuy; 1=1,2,... a.
The form of the left side of equation (19) is independent of the index I.

On the right side occur € and «y, the constants to be defined,
and we are thus enabled to evaluate them, even before calculating v
For, in order that (19) should have a solution at all, it is necessary
and sufficient that its right-hand side should be orthogonal to all
the proper functions of the homogeneous equation (2) belonging to E;.
Therefore, we must have.

(20) { El xsi | (r — ep)urtpmds =0
(m=1,2,3 ... a),

i.e. on account of the normalisation (17),

(2].) IKlmGl =.,;,-§-_:1 Ky ’I’uhﬂkmdx

l. (m=1,2,3...a)

If we write, briefly, for the symmetrical matrix of constants, which
can be evaluated by quadrature,

(22) { | f TUR M T = €im

(7:: m=1, 2,3 ... ‘1)’
then we recognise in
(21:) { ’.quI = iE]. Kl€mi

(m=1,2,3...a)

a system of o linear homogeneous equations for the calculation of
the o constants xu,; m=1, 2 . . . a, where the perfurbation ¢ of
the proper value still occurs in the coefficients, and is ifself un-
known. However, this serves for the calculation of ¢; before that of
the xy,’s. Foritis known that the linear homogeneous system (21°) of
equations has solutions if, and only if, its determinant vanishes. This
yields the following algebraic equation of degree a for ¢ :

23) 2L

----------------
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We see that the problem is completely identical with the transforma-
tion of the quadratic form in a variables, with coefficients e.; to
its principal axes. ‘The * secular equation™ (23) yields a roots for e,
the “reciprocal of the squares of the principal axes”, which in
general are different, and on account of the symmetry of the e,'s
always real. We thus get all the o perturbations of the proper
values (I=1,2 . . . a) at the same time, and would have inferred the
splitting up of an a-fold proper value into exactly « simple values,
generally difierent, even had we not assumed it already, as fairly
obvious. For each of these ¢-values, equations (21') give a system of
quantities x;;;4=1, 2, . . . @, and, as is known, only one (apart from
a general constant factor), provided all the ¢’s are really different.
Further, it is known that the whole system of a2 quantities xy; forms an
orthogonal system of coefficients, defining as usual, in the principal
axes problem, the directions of the new co-ordinate axes with reference
to the old ones. We may, and will, employ the undefined factors just
mentioned to normalise the xy’s completely as * direction cosines ,
and this, as is easily seen, makes the perturbed proper functions
u¥pi(z) turn out normalised again, according to (18), at least in the
* zero approximation *’ (i.e. apart from the A-terms).

If the equation (23) has multiple roots, then we have the case
previously mentioned, when the perturbation does not completely
remove the degeneration. The perturbed equation has then multiple
proper values also and the definition of the constants x; becomes
partially arbitrary. This has no consequence other than that (as
is always the case with multiple proper values) we must and may
acquiesce, even after the perturbation is applied, in a system of proper
functions which in many respects is still arbitrary.

The main task is accomplished with this transformation to principal
axes, and we will often find it sufficient in the applications in quantum
theory to define the proper values to a first and the functions
to zero approximation. The evaluation of ‘the constants x; and
; cannot be carried out always, since it ‘depends on the solution
of an algebraic equation of degree a. At the worst there are
methods which give the evaluation to any desired approximation
by a rational process. We may thus regard these constants as known,
and will now give the calculation of the functions to the first approxima-
tion, for the sake of completeness. The procedure is exactly as in § 1.

We have to solve equation (19) and to that end we write v; as
a series of the whole set of proper functions of (2),

(24) 'u;(:c)= E YL, yiau;,-i'(a:).

. * 7)
The summation is to extend with respect to %' from 0 to o, and, for
each fixed value of &', for ¢’ varying over the finite number of proper
functions which belong to Ej. (Now, for the first time, we take
account of proper functions which do not belong to the a-fold value

! Courant-Hilbert, chap. i. § 3. 3, p- 14.
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E; we are fixing our attention on.} Secondly, we develop the right-
hand side of (19), divided by p(z), in a series of the entire set of
proper functions,

& (r
(25) £ waf5-aui= 2 o
wherein )
o,y = .21 K ] (r — ep)ugtrvdz
T=
(26) ) = i Ki mﬁukve-dm for ' <k
i=1
. =0 for k' =k

(the last two equalities follow from (17) and (20) respectively). On
substituting from (24) and (25) in (19}, we get '

(27) Z vy we(luze] + Brpure) = o preptes.
&) &)

Since uyy satisfies equation (2) with X = E;, this gives
(28) 2 vy replBr— Exyuys = T o popUye.
(%'4) (xi)
By equating coefficients on right and left, all the y;,p+’s are defined,
with the exception of those in which £'=%. Thus
1

Gy _ < ) ; ;o
(29)  yuws Py oy £§1 Ky | rugupzdz (for k&' +%),

while those s for which &’ =k are of course not fixed by equation (19).
This again corresponds to the fact that we have provisionally normal-
ised the perturbed functions u*y, of (18), only in the zero approximation
(through the normalisation of the «y’s), and it is easily recognised
again that we have to put the whole of the y-quantities in question
equal to zero, in order to bring about the normalisation of the w*y’s
even in the first approximation. By substituting from (29) in (24),
and then from (24) in (18), we finally obtain for the perturbed proper
Junctions to a first approximation

=3 el s wel®) [
(30) u¥p(z) = 3—.:1 Kh(“m(ﬂ’) +A (5}, Ei—Ey ] U Uy 1dm)

(l=1: 2) = e C(.).

The dash on the second sigma indicates that all the terms with &'=%
are to be omitted. In the application of the formula for an arbitrary
k, it is to be observed that the «y’s, as obviously also the multiplicity
a of the proper value E;, to which we have specially directed our
attention, still depend on the index %, though this is not expressed in
the symbols, Let us repeat here that the «y’s are to be calculated as
a system of solutions of equations (21°), normalised so that the sum
of the squares is unity, where the coefficients of the equations are
given by (22), while for the quantity € in (21’), one of the roots of -
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(23) is to be taken. This root then gives the allied perturbed
proper value, from ‘

(31) E*;,z= Ek +A€1.

Formulae (30) and (31) are the generalisations of (14) and (15) of § 1.

It need scarcely be said that the extensions and generalisations
mentioned at the end of § 1 can of course take effect here also. It is
hardly worth the trouble to carry out these developments generally.
We succeed best in any special case if we do not use ready-made
formulae, but go directly by the simple fundamental principles, which
have been explained, perhaps too minutely, in the present paper. I
would only like to consider briefly the possibility, already mentioned
at the end of § 1, that the equation (2) perhaps may lose (and indeed
in the case of several variables irreparably lose), its self-adjoint char-
acter if the perturbing terms also contain derivatives of the unknown
function. From general theorems we know that then the proper
values of the perturbed equation no longer need to be real. We can
illustrate this further. We can easily see, by carrying out the
developments of this paragraph, that the elements of determinant
(23) are no longer symmetrical, when the perturbing term contains
derivatives. It is known that in this case the roots of equation (23)
no longer require to be real. '

The necessity for the expansion of certain functions in a series of
proper functions, in order to arrive at the first or zero approxima-
tion of the proper values or functions, can become very inconvenient,
and can at least complicate the calculation considerably in cases
where an extended spectrum co-exists with the point spectrum and
where the point spectrum has a limiting point (point of accumulation)
at a finite distance. This is just the case in the problems appearing
in the quantum theory. Fortunately it is often—perhaps always—
possible, for the purpose of the perturbation theory, to free oneself from
the generally very troublesome extended spectrum, and to develop the
perturbation theory from an equation which does ot possess such a
spectrum, and whose proper values do nof accumulate near a finite
value, but grow beyond all limits with increasing index. We will
become acquainted with an example in the next paragraph. Of course,
this simplification is only possible when we are not interested in a proper
value of the extended spectrum.

II. ArpLicATION TO THE STARK EFFECT

§ 3. Calculation of Frequeneies by the Method which corresponds to
that of Epstein

If we add a potential energy +eFz to the wave equation (5),
Part 1. (p. 2), of the Kepler problem, corresponding to the infiuence
of an electric field of strength F in the positive z-direction, on.a negative
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electron of charge e, then we obtain the following wave equation for
the Stark effect of the hydrogen atom,

8ar®m €2
(32) v+ B+ - eFr)y=0,

which forms the basis of the remainder of this paper. In § 5 we will
apply the general perturbation theory of § 2 directly to this partial
differential equation. Now, however, we will lighten our task by
introducing space parabolic co-ordinates A,, A,, ¢, by the following
equations,

[ £ =4AA; cos ¢
+
(33) ' 1Y =VAA; sin ¢
-+
L’ =3{A; - A,).

A; and A, run from 0 to infinity ; the corresponding co-ordinate surfaces
are the two sets of confocal paraboloids of revolution, which have the
origin as focus and the positive (A,) or negative (A;) z-axis respectively
as axes. ¢ runs from O to 2, and the co-ordinate surfaces belonging
to it are the set of half planes limited by the z-axis. The relation of
the co-ordinates is unique. For the functional determinant we get

Az, y,2)
(34) 0 A d) 1A +4p)-

The space element is thus

(35) dadydz = 1A, +A.)dAdAdd.

We notice, as consequences of (33),

(36) R+yt=AA,; =0 +y2+22={1(A, +A)}2

The expression of (32) in the chosen co-ordinates gives, if we multiply
by (34) * (to restore the self-adjoint form),

/. BN\ B[y a4\ (L. 1\0%
o) e, i

+ 2‘22? [BQy +2e) + 26 — JeF (2 - A} =O0.

Here we can again take—and this is the why and wherefore of all
“ methods ” of solving linear partial differential equations—the
function ¢ as the product of three functions, thus,

(37) P=MA0,

"~ 1 So far as the actual details of the analysis are concerned, the simplest way to
get (32'), or, in general, to get the wave equation for any special co-ordinates, is to
transform not the wave equation itself, but the corresponding variation problem (cf.
Part 1. p. 12), and thus to obtain the wave equation afresh as an Eulerian variation
problem. We are thus spared the troublesome evaluation of the second derivatives.
Ci. Courant-Hilbert, chap. iv. § 7, p. 193.
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each of which depends on only one co-ordinate. For these functions
- we get the ordinary differential equations

97y AN | 27Pmy o p mERE 1Y,
(38) 1 BAI\Al 8A1> e\ eFM? + EA; +e Fow o X;)Al =0,
| 1 37, 0A,\  27%mf w2 1N,
Lm(}‘zgg) e (%eFA,z +E+et+ 8- <A, =0,

Sr%m A,

wherein # and § are two further “ proper value-like ” constants of in-
tegration (in addition to E), still to be defined. By the choice of
symbol for the first of these, we have taken into account the fact
that the first of equations (38) makes it take integral values, if ® and

54 ate to be continuous and single-valued functions of the azimuth .
We then have

(39) o Sin nd

COs

and it is evidently sufficient if we do not consider negative values
of n. Thus

(40) n=0,1,2,3....

In the symbol used for the second constant B, we follow Sommerfeld
(Atombau, 4th edit., p. 821} in order to make comparison easier.
(Similarly, below, with 4, B, C, D.) We treat the last two equations
of (38) together, in the form

2/.0A C
(41) 55(553 +(Der+ 4g+2B + —g)A -0,
where

D meF , 2u'mB By| a'm z
(42) D:}=:F£_h§‘" A== Bﬂ“%?(e”’ﬁ)’ 0=-T

and the upper sign is valid for A=A,, £=A,, and the lower one for
A=A, £=2A, (Unfortunately, we have to write ¢ instead of the
more appropriate A, to avoid confusion with the perturbation para-
meter A of the general theory, §§ 1 and 2.)

If we omit initially in (41) the Stark effect term D¢2, which we
_conceive as a perturbing term (limiting case for vanishing field), then
this equation has the same general structure as equation (7) of Part I.,
and the domain is also the same, from 0 to . The discussion is almost
the same, word for word, and shows that non-vanishing solutions,
which, with their derivatives, are continnous and remain finite within
the domain, only exist if either 4>0 (extended spectrum, correspond-
ing to hyperbolic orbits) or :

B

(43) 1/_—‘4‘ ‘V+ C—k‘i‘%, k—O, 1, 2, PPN

=+
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If we apply this to the last two equations of (38) and distinguish th
two k-values by suffixes 1 and 2, we obtain et ®

v+ Ak, +31++/-C)=B,
\/+ “A(ky+ 1+ ~C)=B,.

By addition, squaring and use of (42) we find
2z
(45) A=-— %ﬁ’ and E=

These are the well-known Balmer-Bohr elliptic levels, where as
principal quantum number enters
(46) =k +ky+n+1.

We. get the discrete term spectrum and the allied proper functions
in a way simpler than that indicated, if we apply results already
known in mathematical literature as follows. We transform first the
dependent variable A in (41) by putting

(47) A=£u
and then the independent ¢ by putting
(48) 26y — A=7.

We find for » as a function of n the equation
(419 d2u n+1du

__.._..;..._._—-+( D 77— %+ B 1u=0.
dn* n dp M24/-A4) V=47
+

This equation is very intimately connected with the polynomials
named after Laguerre. In the mathematical appendix, it will be

(44)

2memet
o

shown that the product of ¢ 2 and the nth derivative of the (n + k)th
Laguerre polynomial satisfies the differential equation

.. n+1, n+1\1\
(103) Yy +Ty +(—i+(k+“—2—— m)y-—O,
and that, for a fixed », the functions named form the complete
system of proper functions of the equation just written, when & runs
through all non-negative integral values. Thus it follows that, for
vanishing D, equation (41"} possesses the proper functions

-3
(49) | wiln) = 2Liy4(n)
and the proper values
(50) B _"tlik (®k=0,1,2..)

2 — A= 2
-+

—and no others! (See the mathematical appendix concerning the
remarkable loss of the extended spectrum caused by the apparently

inoffensive transformation (48); by this loss the development of the
perturbation theory is made much easier.)
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We have now to calculate the perturbation of the proper values
(50) from the general theory of § 1, caused by including the D-term
in (41'). The equation becomes self-adjoint if we multiply by 7*+1,
The density function p(z) of the general theory thus becomes 7. As
perturbation function (z) appears

D Nn+2
(51) *(2":"/—“_'-—‘4—).;,’2 2,

(We formally put the perturbation parameter A=1: if we desired,

we could identify D or F with it.) Now formula (7') gives, for the
perturbation of the Zth proper value,

D /: 72~ Ly a(n)]dn
€= = 3 ;B
(2y'-4) |, eI atmPan

For the integral in the denominator, which merely provides for the
normalisation, formula (115) of the appendix gives the value

(52)

n+k)!
(53) L(_]g_l)"_]'a’
while the integral in the numerator is evaluated in the same place, as
133

(54) [@-%’!‘)—'](nu 60k + 6k + 6% + 30 +2).
Consequently ‘

: D
(55) €p= — (2—‘/_“--:-2—)-5(%2 + 6nk +6k% + 6k +3n + 2).

-+

The condition for the kth perturbed proper value of equation (41")
and therefore, naturally, also for the kth discrete proper value of the
original equation {41) runs therefore

(56) \/I__g—.=n;'1+k+e,,
+
(€x is retained meantime for brevity).

This result is applied twice, namely, to the last two equations
of (38) by substituting the two systems (42) of values of the constants
4, B, C, D; and it is to be observed that n is the same number
in the two cases, while the two k-values are to be distinguished by
the suffixes 1 and 2, as above. First we have

B_l___n-i-l_’_k te
/_A— 2 1 kl
+

Bz n""l

;—--A= ) +k2+€k2,
\ +

(57) J
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whence comes (B, 1B
(= 21D
(38) A= - e en)
(applying abbreviation (46) for the principal quantum number). In

the approximation we are aiming at we may expand with respect
to the small quantities €; and get

(59) 4= Q%B”)[l —(eh-!-e;,z)].

Furthey, in the calculation of these small quantities, we may use the

approximate value (45) for 4 in (55). We thus obtain, noticing the
two D values, by (42), '

Fre
h=tpi i es(nﬁ +6nk; + 6k, + 6k, +3n +2)

€po = —Bﬂ lzes(n +6nk, +6k,2 +6k, +3n +2).

(60)

Addition gives, after an easy reduction,
SFRA Kk, — k)
32nPmed

If we substitute this, and the values of 4, B,, and B, from (42) in
(59), we get, after reduction,

" ontmed 3K Fl(k,— k)
(62) E= -~ wime

This is our provisional conclusion ; it is the well-known formula of
Epstein for the term values in the Stark effect of the hydrogen
spectrum.

%k, and %, correspond fully to the parabolic quantum numbers;
they are capable of taking the value zero. Also the integer n, which
has evidently to do with the equatorial quantum number, may from
(40) take the value zero. However, from (46) the sum of these three
numbers must still be increased by urity in order to yield the principal
quantum number. Thus (% +1) and not # corresponds to the equatorial
quantum number. The value zero for the latter is thus automatically
excluded by wave mechanics, Just as by Heisenberg’s mechanies.?
There s simply no proper function, i.e. no state of vibration, which
corresponds to such a meridional orbit. This important and gratxfy—
ing circumstance was already brought to light in Part I. in counting
the constants, and also afterwards in § 2 of Part 1. in connection with
the azimuthal quantum number, through the non-existence of states
of vibration corresponding to pemlulum orbits ; its full meaning, how-
ever, ouly fully dawned on me through the remarks of the two
authors just quoted.

(61) €ry +€kg =

'192;W Pauli, jun., Ztschr. f. Phys. 36, p. 336, 1926; N. Bohr, Die Nalurw, 1,
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For later application, let us note the system of proper functions
of equation (32) or (32) in “ zero approximation , which belongs to the
proper values (62). It is obtained from statement (37), from con-
clustons (39) and (49), and from consideration of transformations (47)
and (48) and of the approximate value (45) of 4. For brevity, let us
call a, the * radius of the first hydrogen orbit”. Then we get

63 L L ®
(63) AV =4 ttmes %
The proper functions (not yet normalised !) then read
B8 Atk A A, \ sin
68 dmag=haBate” B 12, (P8 (72) T .
They belong to the proper values (62), where ! has the meaning
(46). To each non-negative integral trio of values n, k), k, belong

sin .
cos) two- proper functions or one,

(on account of the double symbol
according as n>0 or n=0.

§ 4. Atiempt to calculate the Intensities and Polarisations of the
Stark Effect Patierns

I have lately shown?! that from the proper functions we can calculate
by differentiation and quadrature the elements of the matrices, which
are allied in Heisenberg’s mechanics to functions of the generalised
position- and momentum-co-ordinates. For example, for the (r')th
element of the matrix, which according to Heisenberg belongs to the
generalised co-ordinate g itself, we find

¢ = [ap@Wio e ()i
| Jotatsiaria. [piansoarpas)

Here, for our case, the separate indices each deputise for a frio of
indices n, k;, k;, and further, x represents the three co-ordinates
7, 8, ¢. p(x) is the density function ; in our case the quantity (34).
We may compare the self-adjoint equation (32) with the general
form (2)). The “denominator” (. ..)~% in (65) must be put in
because our system (64) of functions is not yet normalised.
According to Heisenberg,? now, if ¢ means a rectangular Cartesian
co-ordinate, then the square of the matrix element (65) is to be a measure
“of the “ probability of transition ”” from the rth state to the »’th, or,
more accurately, a measure of the intensity of that part of the radiation,
bound up with this transition, which is polarised in the g-direction.
Starting from this, I have shown in the above paper that if we make
1 Preceding paper of this collection.

2 W. Heisenberg, Ztschr. f. Phys. 33, p. 879, 1925; M. Born and P. Jordan,
Zischr., f. Phys. 34, pp. 867, 886, 1925,

(65)
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certain simple assumptions as to the electrodynamical meaning of ¢,
the ““ mechanical field scalar ”, then the matrix element in question is
susceptible of a very simple physical interpretation in wave mechanics,
namely, actually: component of the amplitude of the periodically oscil-
lating electric moment of the atom. The word component is to be taken
in a double sense : (1) component in the g-direction, 7.e. in the spatial
direction in question, and (2) only the part of this spatial component
which changes in a time-sinusoidal manner with exactly the frequency
of the emitted light, | E, - E,|/k. (It is a question then of a kind of
Fourier analysis: not in harmonic frequencies, but in the actual
frequencies of emission.) However, the idea of wave mechanics is not
that of a sudden transition from one state of vibration to another, but
according to it, the partial moment concerned—as I will briefly name
it—arises from the simulianeous ezistence of the two proper vibra-
~ tions, and lasts just as long as both are excited together.

Moreover, the above assertion that the ¢™”s are proportional to the
partial moments is more accurately phrased thus. The ratio of, eg.,
g™ to ¢ is equal to the ratio of the partial moments which anse
when the proper function i, and the proper functions iy and ¢~ are
stimulated, the first with any strength whatever and the last two with
strengths equal to one another—i.c. corresponding to normalisation,
To calculate the ratio of the intensilies, the ¢g-quotient must first be
squared and then multiplied by the ratio of the fourth powers of the
emission frequencies. The latter, however, has no partin the intensity
ratio of the Stark effect components, for there we only compare
intensities of lines which have practically the same frequency.

The kmown selection and polartsation rules for Stark effect com-
ponents can be obtained, almost without calculation, from the integrals
in the numerator of (65) and from the form of the proper functions
in (64). They follow from the vanishing or non-vanishing of the
integral with respect to ¢. We obtain the components whose
electric vector vibrates parallel to the field, .. to the z-direction, by
replacing the ¢ in (65) by z from (33). The expression for z, ..
3(A; - A,), does mot contain the. azimuth ¢. Thus we see at once
from (64) that a non-vanishing result after integration with respect
to ¢ can only arise if we combine proper functions whose #’s are
equal, and thus whose equatorial quantum numbers are equal, being
in fact equal to n+1. For the components which vibrate per-
pendicular to the field, we must put ¢ equal to z or equal to y
(cf. equation (33)). Here cos ¢ or sin ¢ enters, and we see almost
as easily as before, that the n-values of the two combined proper
functions must differ exactly by unity, if the integration with respect
to ¢ is to yield a non-vanishing result. Hence the kmown selection
and polarisation rules are proved. Further, it should be recalled
again that we do not require to exclude any n-value after additional
reflection, as was necessary in the older theory in order to agree with
experience. Our n is smaller by 1 than the equatorial quantum
pumber, and right from the beginning cannot take negative values
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(quite the same state of affairs exists, we know, in Heisenberg’s
theory).!

The numerical evaluation of the integrals with respect to A, and
A, which appear in (65) is exceptionally tedious, especially for those of
the numerator. The same apparatus for calculating comes into play as
served already in the evaluation of (52), only the matter is'somewhat
more detailed because the two (generalised) Laguerre polynomials,
whose product is to be integrated, have not the same argument. By
good Iuck; in the Balmer lines, which interest us principally, one of

the two polynomials L7.; namely that relating to the doubly
quantised state, is either a constant or is a linear function of its
argument. The method of calculation is described meore fully in the
mathematical appendix. The following tables and diagrams give the
results for the first four Balmer lines, in comparison with the known
measurements and estimates of intensity, made by Stark 2 for a field
strength of about 100,000 volts per centimetre. The first column
indicates the state of polarisation, the second gives the combination
of the terms in the usual manner of description, 7.e. in our symbols :
of the two trios of numbers (k,, k,, n+1) the first trio refers to the
higher quantised state and the second to the doubly quantised state.
The third column, with the heading A, gives the term decomposition
in multiples of 3k2F[8n%ne, (see equation (62)). The next column
gives the intensities observed by Stark, and 0 there signifies not
observed. The question mark was put by Stark at such lines as clash
either with irrelevant lines or with possible ‘ghosts” and thus
cannot be guaranteed. On account of the unequal weakening of the
two states of polarisation in the spectrograph, according to Stark his
results for the || and for the L components of vibration are not directly
comparable with one another. Finally, the last column gives the
resuits of our calculation in relative numbers, which are comparable
for the collective components (|| and _L) of one line, e.g. of H,, but not
for those of H. with Hj, etc. These relative numbers are reduced
to their smallest integral values, 4.e. the numbers in each of the four
tables are prime to each other.

1 W. Pauli, jun., Zisckr. f. Physik, 36, p. 336, 1926.
 J. Stark, Ann. d. Phys. 48, p. 193, 1915.

[TaBLES
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INTENSITIES IN THE STARK EFXFECT OF THE BALMER LINES
TABLE 1
H,
Polarisation. Combination. A Observed Intensity. | Calculated Intensity.
(111} (011) 2 1 729
i (102) (002) 3 11 2304
{201) (101) 4 1-2 1681
{201) {(011) 8 0 1
Sum : 4715
(003) (002) 0 . 4608
(111} (002) 0 } 26 { 882
L (102) {101) 1 i 1936
(102) (011) 3 0 16
{201) (002) 6 0 18
Sum *: 4715
* Undisplaced components halved.
TABLE 2
Hg
Polarisation. Combination. A Observed Intensity. | Calculated Intensity.
{112) (002) 0 14 ]
(211} (101) 2 1-2 9
— {4) 1 o
' (211) (011) 6 48 81
U (202) (002) 8 91 384
(301) (10%) 10 11-5 361
— (12) 1 0
{301) {011) 14 0 1
Sum : 836
— {0) 1-4 0
dmen | 1 X
(211) (002) 4 } 12-6 { 72
L (202) (101) 6 9-7 204
— (8) 1-3 0
{202) (011) 10 1112 6
{301) (602) 12 17 8

Sum ; 836
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INTENSITIES. IN THE STARK EFFECT OF THE BALMER LINES

TABLE 3
Hy
Polarisation. Combination. & Observed Intensity. | Calculated Intensity.
(221) (011) ) 16 15 625
(212} (002) 5 15 19 200
(311) (101) 8 1 1521
I (311) (011) 12 2:0 16 641
(302) (002) 15 72 115 200
(401) (101) 18 10-8 131 769
(401) {011) 22 1? 729
Sum : 300 685
(113) (002) 0 } 7.9 { 115 200
(221) (002) 0. 26 450
(212) {101) 3 32 46 128
(212) (011) 7 12 5 808
En {(203) (002) 10 } 43 { 76 800
(311) (002) 10 11 250
(302) (101) 13 61 83 232
(302) (011) 17 1-1 2 592
(401) {002) 20 1 4 050
Sum : * 300 685
* Undispiaced components halved.
TABLE 4
H;
Polarisation. | Combination. A Observed Intensity. | Calculated Intensity.
(222) (002) 0 0 0
{321) (101) 4 1 8
(321) (011} 8 1-2 32
{312) (002) 12 15 72
i (411) (101) 16 1-2 18
(411) (011) 20 1-1 18
{402) (002) 24 28 180
(501) (101) 28 7-2 242
{501) (011) 32 1% 2
Sum: 572
(222) (011) 2 1-3 36
(213) {002) 6 } g0 { 162
(321) (002) 6 36
{312) (101} 10 21 98
(312) (011) 14 1 2
+ (303) (002) 18 } 2.0 90
{411) (002) 18 9
{402) (101) 22 24 125
(402) (011) 26 1-3 5
(501) (002) 30 12 9
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In the diagrams it is to be noticed that, on account of the huge
differences in the theorefical intensities, some theoretical intensities
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cannot be truly represented to scale, as they are much too small.
These are indicated by small circles.

A consideration of the diagrams shows that the agreement is
tolerably good for almost all the strong components, and taken all
over it is somewhat better than for the values deduced from corre-
spondence considerations.! Thus, for example, is removed one of the
most serious contradictions which arose, in that the correspondence
principle gave the ratio of the intensities of the two strong _L -components
of Hg, for A=4 and 6, inversely and indeed very much out, in fact

ezp.

2 B B 2 & 5 2 253/25&92!2

fheon

I O O

2 5 2 & 5 2 2 5 8% pss
F1e. 5.—Hy ||-components,

as almost 1:2, while experiment requires about 5:4. A similar
thing occurs with the mean (A=0) _-components of H,, which
decidedly preponderate experimentally, but are given as far too weak
by the correspondence principle. In our diagrams also, it is admitted
that such *reciprocities” between the intensity ratios of intense
components demanded by theory and by experiment are not entirely
wanting. The theoretically most intense ||-component (A=3) of H,
is furthest out; by experiment, it should Lie between its neighbours
in intensity. And the two strongest ||-components of H, and two
L-components {A=10, 13) of H, are given “reciprocally ” by the

! H. A. Kramers, Ddnische Akademie (8), iii. 3, p. 333 e seg., 1919.
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theory. Of course, in both cases the intensity ratios, both experi-
mentally and theoretically, are pretty near unity.

Passing now to the weaker components, we notice first that the
contradiction which exists for some weak observed components of
Hp to the selection and polarisation rules, of course still remains
in the new theory, since the latter gives these rules in conformity
with the older theory. However, components which are extremely weak
theoretically are for the most part unobserved, or the observations
are guestionable. The strength raidos of weaker components to one
another or to stronger ones are almost never given even approximately
correctly ; cf. especially H, and H;. Such serious mistakes in the
experimental determination of the blackening -are of course out of
the question.

Considering all this, we might feel inclined to be very sceptical of
exp.

j;l,'tlll inlllf

26 22 18 ™ 10 6 2 2 6 0 ™ 18 22 25 30

theoref.

L

30 26 22 13 N

b4
W 6 2 2 6 10 W 18 22 26 30

Fi1o. 8.—H; 1 -components.

the thesis that the integrals (65) or their squares are measures of
intensity. I am far from wishing to represent this thesis as irrefutable.
There are still many alterations conceivable, and these may, perhaps,
be necessitated by internal reasons when the theory is further extended.
Yet the following should be remembered. The whole calculation has
been performed with the unperturbed proper functions, or more pre-
cisely, with the zero approximation to the perturbed ones (cf.above § 2).
1t, therefore, represents an approximation for a vanisking field strength!
However, just for the weak or almost vanishing components we
should expect theoretically a fairly powerful growth with increasing
field strength, for the following reason. According to the Yiew of
wave mechanics, as explained at the beginring of this section,
the integrals (65) represent the amplitudes of the electrical partial
moments, which are produced by the distribution of charges which
flow round about the nucleus within the atom’s domain. When for
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a line component we get as a zero approximation very weak or even
vanishing intensity, this is not caused in any way by the fact that
to the simultaneous existence of the two proper vibrations corre-
sponds only an insignificant motion of electricity, or even none at all.
The vibrating mass of electricity—if this vague expression is allowed-—
may be represented as the same in all components, on the ground of
normalisation. Rather is the reason for the low line intensity to
be found in & high degree of symmeiry in the motion of the electricity,
through which only a small, or even no, dipole moment arises (on the
contrary, eg., oply a four-pole moment). Therefore it is to be
expected that the vanishing of a line component in presence of per-
turbations of any kind is a relatively wnstable condition, since the
symmetry 1s probably destroyed by the perturbation. And thus
it may be expected that weak or vanishing components gain quickly
in intensity with increasing field strength.

This has now actually been observed, and the intensity ratios,
indeed, alter quite considerably with field strength, for strengths of
about 10,000 gauss and upwards; and, if I understand aright, in the
way ! shown by the present general discussion. Certain information
on the question whether this really explains these discrepancies could
of course only be got from a continuation of the calculation to the
next approximation, but this is wery troublesome and complicated.

The present considerations are of course nothing but the * transla-
tion” into the language of the new theory of very well-known considera-
tions which Bohr 2 has brought forward in connection with calculation
of line intensities by means of the principle of correspondence.

The theoretical intensities given in the tables satisfy a fundamental
requirement, which is set up not only by intuition but also by experi-
ment,® viz., the sum of the intensities of the ||-components is equal
to that of the L -components. (Before adding, undisplaced components
must be halved—as a compensation for the duplication of all the
others, which occur on both sides.) This makes a very welcome
“ control ™’ for the arithmetic.

It is also of interest to compare the fofal infensities of the four
lines by using the four “sums” given in the tables. For this pur-
pose I take back from my numerical calculations the four factors,
which were omitted in order to represent the intensity ratios within
each of the four line groups by the smallest integers possible, and
multiply by them. Further, I multiply each of these four products
by the fourth power of the appropriate emission frequency. Thus I
obtain the following four numbers :

28,23.41

for H,_ .« .. W =0-003433 . ..
forHy . . . %—12 =0-001573 . . .

* J. Stark, Ann. d. Phys. 43, p. 1001 et segq., 1914.
2 N. Bohr, Danische Akademie (8), iv. 1. I, p- 35, 1918.
* J. Stark, Ann. d. Phys. 43, p. 1004, 1914.
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6 6 2
for &, ... 2510008312 . . .

for Hs . . . %-333; —0-0004849 . . .

I give these numbers with still greater reserve than the former ones
because I am not sure, theoretically, about the fowrth power of the
frequency. Investigations! which I have

‘. lately published seem to call, perhaps, for

, the sixth. The above method of calculation
N\ corresponds exactly to the assumptions of

' Born, Jordan, and Heisenberg.? Fig. 9 re-

\ presents the results diagrammatically.

. Actual measured intensities of emission
. lines, which are known to depend greatly on
. the conditions of excitation, naturally cannot

[~+--..._ here be used in a comparison with experi-
[ ]"' ence. From his researches?® on dispersion
p, P ¥ 4, and magneto-rotation in the neighbourhood
= % % % of H, and Hy, R. Ladenburg has, with

Fie. 9.—Totel Intensities. ~ F, Reiche,* calculated the value 4-5 (limits

3 and 6) for the ratio of the so-called * elec-
tronic numbers ’ of these two lines. If I assume that the above
numbers may be taken as proportional to Ladenburg’s 8 expression,

> L

= EV,
g v

then they may be reduced to (relative) * electronic numbers by
division by »g3, z.e. by
3

(%)3’ (Té)s’ (%)s, and (—g-)srespectively.
Hence we obtain the four numbers,

1-281, 0-2386, 0-08975, 0-04418.

The ratio of the first to the second is 5-37, which agrees sufficiently
with Ladenburg’s value.

* Equation (38) at end of previous paper of this collection. The jourth allows for
the fact that for the radiation it is a question of the square of the acceleration and not,
of the electric moment itself. In this equation (38) occurs explicitly another factor
(Ex ~En)/h. This is occasioned by the apga:mnee of 87§ in statement (36).
Addition at proof correction : Now I recognise this o/af to be incorrect, though I hoped
it would make the later relativistic generalisation easier. Statement (36), loc. cil., is
to be replaced by y.  The above doubts about the fourth power are therefore dissolved.

2 Cf. M. Born and P. Jordan, Ztsckr. f. Phys. 34, p. 887, 1925,

3 R. Ladenburg, Ann. d. Phys. (4), 38, p. 249, 1912.

4 R. Ladenburg and F. Reiche, Die Naturwissenschafien, 1923, p. 584.

® Cf. Ladenburg-Reiche, loc. cit,, the first formula in the second column, p. 584.
The factor v, in the above expression comes from the fact that the * transition

probability ” a;; is still to be multiplied by the “energy quantura” to give the
intensity of the radiation.




QUANTISATION AND PROPER VALUES—III 93

§5. Treatment of the Stark Effect by the Method which
corresponds to that of Bohr

Mainly to give an exzample of the general theory of §2, I wish to
outline that treatment of the proper value problem of equation (32),
which must have been adopted, if we had not noticed that the perturbed
equation is also exactly “separable” in parabolic co-ordinates. We
therefore now keep to the polar co-ordinates r, 6, ¢, and thus replace

z by rcos§. We also introduce a new variable % for 7 by the
transformation

(66) o /-@%fﬁ:n,

(which is closely akin to transformation (48) for the parabolic co-

ordinate £). For one of the unperturbed proper values (45), we get
from (66}

’ 2r
(66°) =7
where ¢, is the same constant as in (63). (“ Radius of the innermost

hydrogen orbit.”) If we introduce this and the unperturbed value
(45) into the equation (32), which is to be treated, then we obtain

(67) v+ —%- gn cos 0 +%—)¢ =0,
where for brevity
(68) _a*FP

g de

The dash on the Laplacian operator is merely to signify that in it the
letter % is to be written for the radius vector.

In equation (67) we conceive I to be the proper value, and the term
in g to be the perturbing term. The fact that the perturbing term
contains the proper value need not trouble us in the first approxima-
tion. If we neglect the perturbing term, the equation has as proper
values the natural numbers
(69) 1=1,2,3,4 ...
and no others. (The extended spectrum is again cut out by the artifice
{66), which would be valuable for closer approximations.) The allied
proper functions (not yet normalised) are

— n
(70) ‘.l'lnm, = P;': (cos 9) (:.1); (11@96) .t 2Li+-il~ 1(17).

Here P} signifies the mth “ associated ” Legendre function of the
‘nth order, and L2 is the (2n + 1)th derivative of the (n +I)th Laguerre
polynomiall So we must have
n<l,

1 1 lately gave the proper functions {70) {see Par$ I.), but without noticing their
connection with the Laguerre polynomials. For the proof of the above representation,
see the Mathematical Appendix, section 1. '
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otherwise L2%%' would vanish, because the number of differentiations

would be greater than the degree. With reference to this, the
numbering of the spherical surface harmonics shows that ! is an >-fold
proper value of the unperturbed equation. We now investigete the
splitting up of a definite value of I, supposed fixed in what follows,
due to the addition of the perturbing term.

To do this we have, wn the first place, to normalise our proper
functions (70), according to § 2. From an uninteresting calculation,
which is easily performed with the aid of the formulae in the appendix,?
we get as the normalising factor

2 Pr+l [m-m)! [T=n-1)1
(1) \/-r—r\/ 2 \/(n+m)!'\/[(n+l)!]3’

if m=+0, but, for m=0, % times this value. Secondly, we have to

calculate the symmetrical matrix of constants e, according to
(22).  The r there is to be identified * with our perturbing function
~gn®cos Osin 0, and the proper functions, there called u;, are to
be 1dentified with our functions (70). The fixed suffix %, which
characterises the proper value, corresponds to the first suffix I of
Yinm, and the other suffix ¢ of uy corresponds now to the pair of
suffixes 7, m in ¢im. The matrix (22) of constants forms in our case
a square of /2 rows and I columns. The quadratures are easily carried
out by the formulae of the appendix and yield the following results.
Only those elements of the matrix are different from zero, for which
the two proper functions ¥inm, Piwm, to be combined, satisfy the
following conditions simultaneously :

1. The upper tndices of the  associated Legendre functions ” must
agree, t.e. m=1m'.

2. The orders of the two Legendre functions must differ exactly by
unity, .e. [n-n'|=1.

3. To each tno of indices Inm, if m +0, there belong, according to
(70), two Legendre functions, and thus also two proper functions nm,
which only differ from each other in that one contains a factor
cos m¢$ and the other sin mé. The third condition reads: we may
only combine sine with sine, or cosine with cosine, and not sine with

cosine.
- The remaining non-vanishing elements of the desired matrix
- would have to be characterised from the beginning by two index-pairs
(n, m) and (n+1, m), (We renounce any idea of showing the fixed
index 1 explicitly.) Since the matrix is symmetrical, one index pair
(n, m) is sufficient, if we stipulate that the first index, i.e. n, shall
mean the greater of the two orders n, »’, in every case.

! It is to be noticed that the density function, generally denoted by p(z), reads as
7 8in 6 in equation (67), because the equation must be mulitiplied by 2 sin 8, in order
to acquire self-adjoint form..




QUANTISATION AND PROPER VALUES—III 95
Then the calculation gives

" N

We have now to form the determinant (22) out of these elements.
1t is advantageous to arrange its rows as well as its columns on the
following principle. (To fix our ideas, let us speak of the columnus,
and therefore of the index-pair characterising the first of the two
Legendre functions.) Thus : first come all terms with m =0, then all
with m =1, then all with m =2, etec., and finally, all terms with m =1-1,
which last is the greatest value that m (like n) can take. Inside
each of these groups, let us arrange the terms thus: first, all terms
with cos m¢p, and then all with sin m¢p. Within these * half groups
let us arrange them in order of increasing n, which runs through the
values m, m+1, m+2 . .. 1-1, i.e. (I -m) values in all.

If we carry this out, we find that the non-vanishing elements (72)
are exclusively confined to the two secondary diagonals, which lie
immediately alongside the principal diagonal. On the lafter are
the proper value perturbations which are to be found, but taken
negatively, while everywhere else are zeros. Further, the two
secondary diagonals are interrupted by zeros at those places, where
they break through the boundaries between the so-called “ hali-
groups ”, in very convenient fashion. Hence the whole determinant
breaks up into a product of just so many smaller determinants as
there are * half-groups” present, viz. (21-1). It will be sufficient
if we consider one of them. We write it here, denoting the desired
perturbation of the proper value by e (without suffix) :

-—€ €mtl,m 0 0 0

€m4+1,m  —€  €fmi2m ¢ ... 0

¢ €m42,m —€ €Emi3m 0

(73) 0 0 emism —¢ 0
0 0 0 0 a-im —¢

If we divide each term here by the common factor 6lg of the enn’s
(cf. (72)), and for the moment regard as the unknown
*_ _.S

(74) k= 6
the above equation of the (I —m)th degree has the roots
- (75) BF=x(l-m-1), x(l-m-3), x(l-m-5)...
where the series stops with +1 or 0 (inclusive) according as the
degree |—m is even or odd. The proof of this is unfortunately
not to be found in the appendix, as I have not been successful in
obtaining it.

If we form the series (75) for each of the valuesm=0,1,2 ... ({-1),
then we have in the numbers '

(76) = —6lgk*
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the complete set of perturbations of the principal quantum number 1.
In order to find the perturbed proper values E (term-levels) of the
equation (32), we have only to substitute (76) in

2m2met
(1)) E=- P+
taking into account the signification of the abbreviations g (see (68))
and g, (see (63)).
After reducing this gives

ntmet 3 WEFIE*
(78) E= -5 -5 oms

Comparison with (62) shows that k* is the difference k, -k, of the
parabolic quantum numbers. From (75), bearing in mind the range
of values of m referred to above, we see that x* may also take the
same values as the difference Just mentioned, viz. 0, 1,2 ... (I-1).
Also, if we take the trouble to work it out, we will find for the
multiplicity, in which k* and the difference k,-k, appear, the same
value, viz. 1 - |k¥|.

We have thus obtained the proper value perturbations of the
first order also from the general theory. The next step would be
the solution of the system (21') of linear equations of the general -
theory for the x-quantities. These would then yield, according to
(18) (provisionally putting A=0), the perturbed proper functions
of zero order; this is nothing more than a representation of the
proper functions (64) as linear forms of the proper functions (70).
In our case the solution of (21") would naturally be anything but
unique, on account of the considerable multiplicity of the roots e.
The solution is made much simpler if we notice that the equations
break up into just as many groups, viz. (2l-1), or, retaining the
former expression, half-groups, with completely separated variables,
as the determinant investigated above contains factors like (73); and
if we further notice that it is allowable, after we have chosen a
definite e-value, to regard only the variables « of a single half-group
as different from zero, of that half-group, in fact, for which the deter-
minant (73) vanishes for the chosen e-value. The definition of this
half-group of variables is then unigue.

But our object, viz. to illustrate. the general method of § 2 by an
example, has been sufficiently attained. Since the continuation of
the calculation is of no special physical interest, I have not troubled
to bring the determinantal quotients, which we immediately obtain
for the coefficients «, into a clearer form, or to work out the transforma-
tion to principal axes in any other way.

On the whole, we must admit that in the present case the method
of secular perturbations (§5) is considerably more troublesome than
~the direct application of a system of separation (§3). I believe that
this may also be true in other cases. In ordinary mechanics it is,
as we know, usually quite the reverse.
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III.—MATHEMATICAL APPENDIX

Prefatory Note :—It is not intended to supply in uninterrupted
detail all the calculations omitted from the text. Without that, the
present paper has already become too long. In general, only those
methods of caleulation will be briefly described which another might
utilise with advantage in similar work, if something better does not
occur to him—as it may easily do.

§ 1. The Generalised Laguerre Polynomials and
Orthogonal Functions

The kth Laguerre polynomial Ly(z) satisfies the differential equation?
(101) zy" +(1-2)y +ky=0.
If we first replace k by n+k, and then differentiate n times, we find
that the nth derivative of the (z+k)th Laguerre polynomial, which

we will always denote by Lz..z, satisfies the equation
(102) oy" +(n+1-2)y +ky=0.

x
Moreover, by an easy transformation, we find that for e 2Ly, (%)
the following equation holds,
e BHL 1 n+1\ 1)
(103) Y "|"—£‘"y +(-—z+(k+"-§'—) E)y—().

This found an application in equation (41’) of § 3. The allied generalised
Laguerre orthogonal functions are

n T
(104) z2e TLY, ().
Their equation, it may be remarked in passing, is
T n+1\1 #2\
(105) gy +( -3+ (E+ D) 2~ Dy =o.

Let us tumn to equation (103), and consider there that » is a fixed
(real) integer, and % is the proper value parameter. Then, accord-
ing to what has been said, in the domain %>0, at any rate, the
equation has the proper functions,

(106) e 2Lhul2),
belonging to the proper values,
(107) £=0,1,2,3, ...

In the text it is maintained that it has no further values, and,

above all, that it possesses no confinuous spectrum. This seems
paradoxical, for the equation

d%y n+ldy 1 1
a8 G (g

1 Courant-Hilbert, chap. ii. § 11, 5, p. 78, equation {72).
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into which (103) is transformed by the substitution %
n+1 ]
(109) t=(k+20)e
does possess a continuous spectrum, if in it we regard
, 1
(110) B -y

as proper value parameter, viz. all positive values of E are proper
values (cf. Part I, analysis of equation (7). The reason why no
proper values & of (103) can correspond to these positive E-values is
that by (110) the k-values in question would be complex, and this is
imposstble, according to general theorems.® Each real proper value of
(103), by (110), gives rise to a negative proper value of (108). Moreover,
we know (cf. Part 1.) that (108) possesses absolutely no negative proper
values other than those that arise, as in (110), from the series (107).
There thus remains only the one possibility, that in the series (107)
certain negative %-values are lacking, which appear on solving (110)
for %, on account of the double-valuedness when extracting the root.
But this also is impossible, because the k-values in question turn out to

be algebraically less than ——%—1 and thus, from general theorems,?

cannot be proper values of equation (103). The series of values
(107) is thus complete. Q.E.D.

The above supplements the proof that the functions (70) are the
proper functions of (67) (with the perturbing term suppressed), allied
to the proper values (69). We have only to write the solutions of (67)
as a product of a function of §, ¢ and & function of 7. The equation
in 7 can readily be brought to the form of (105), the only difference
being that our present = is there always an odd number, namely, the
(2n +-1) which is to be found there.

§ 2. Definite Integrals of Products of Two Laguerre
Orthogonal Functions

The Laguerre polynomials can all be obtained, in the following
manner, as coefficients of the powers of the auxiliary variable ¢,
in the expansion in a series of a so-called * generating function * 3

2t
- NS
(11) 2 Lo)g="""
If we replace & by n+k and then differentiate # times with respect
to z, we obtain the generating function of our generalised polynomials,

zt
(112) 3 L2 a(a)—t L
—o YR I TR (I —gn+1
 Courant-Hilbert, chap. iii. § 4, 2, p- 115.

2 Courant-Hilbert, chap. v.

4
§5, 1, p. 240.
® Courant-Hilbert, chap. ii. § 1

1
1, 5, p. 78, equation (68).
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In order to evaluate with its help integrals such .as appeared for
the first time in the text in expression (52), or, more generally, such
as were necessary in §4 for the calculation of (65), and also in §5,
we proceed as follows. We write (112) over again, providing hoth
the fixed index » and the varying index % with a dash, and replacing
the undefined ¢ by s. These two equations are then multiplied
together, i.e. left side by left side, and right side by right. Then
we multiply further by
(113) : xPe=*
and integrate with respect to « from 0 to . p is to be a positive
integer—this being sufficient for our purpose. The integration is
practicable by elementary methods on the right-hand side, and we get
@ ® ths¥ @ Doz TR "
08 2 3 ey ]0 wPe- LT, () LT, 1(2)d
| (L=l —s)p-
: (1 =ts)p+1
We have now, on the left, the desired integrals like pearls on a string,
and we merely detach the one we happen to need by searching
on the right for the coefficient of t*s*’. This coefficient is always
a simple sum, and, in fact, in the cases occurring in the text, always
a finite sum with very few terms (up to three). In general, we have
fmm?e"L§+k(w)Lﬁz+y(a:)dm=p! (n+k)! (" +K)!

(115) ° <k ¥

B oy g2

The sum stops after the smaller of the two numbers %, %’. Tt often, in
actual fact, begins at a positive value of 7, as binomial coefficients,
whose lower number is greater than the upper, vanish. For example,
in the integral in the denominator of (52), we put p=n=n’, and
k'=k. Then T can take only the one value %k, and we can establish
statement (53) of the text. In the integral of the numerator in (52),
only p has another value, namely p=n+2. 7 now takes the values
k-2, k-1, and k, and after an easy reduction we get formula (54)
of the text. In the very same way the integrals appearing in §5
are evaluated by Laguerre polynomials. _

We can now, therefore, regard integrals of the type of (115) as
known, and we have only to concern ourselves with those occurrin
in §4 in the calculation of intensities (cf. expression (65) and functions
(64) which have. to be substituted there). In this type, the two
Laguerre orthogonal functions, whose product is to be integrated,
have not the same argument, but, for example, in our case, have the
arguments Afla, and Ay/l'a,, where [ and I are the principal quantum
numbers of the two levels that we have combined. Let us consider,
as typical, the integral

a-t8 ,
(116) J= f 26~ T 12 (an)LE , v Bz
0

=(-1y**"p
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Now we can proceed in a superficially different way. At firs,, the
former procedure still goes on smoothly ; only on the right-hard <ide
of (114) a somewhat more complicated expression appears. ™ the
denominator ocours the power of a quadrinomial instead of t1 & of a
binomial, as before. And this makes the matter somewhat co asing,
for the right-hand side of (114) becomes five-fold instead of thr. -fold,
and thus the right side of (115) becomes a three-fold instead of + mple
sum. I found that the following substitution made things ¢} @ :=:

(117) i%§x=y.

Hence P
ax={1+"F y

(118) ( :i’ )
ﬁ$=(1 “aTpN

After expanding the two polynomials in their Taylor series, w .ich
are finite and have similar polynomials as coefficients, we get, using
the abbreviations

2 _a-B
(119) O‘=m: y-—a-——-—+ﬁs
the following,
- p+1 . & W aiall P4 Adp FHRHA g
(120) J=ov4t 2 3 (-1 [ e L) L sy,

Thus the calculation of J is reduced to the simpler type of integral
(115). In the case of the Balmer lines, the double sum in (120) is
comparatively tractable, for one of the two k-values, namely, the one
referring to the two-quantum level, never exceeds unity, and thus
A may have two values at most, and, as it turns out, p four values at
most. The circumstance that out of the polynomials referring to
the two-quantum level, none but

L=1, Li=-2+1, Li=-1,

appear, permits further simplifications. Nevertheless we must calcu-
late out a number of tables, and it is much to be regretted that the
figures given in the tables of the text for the intensities do not allow
their general construction to be seen. By good fortune the additive
relations between the ||- and the L components hold good, so that
we may, with some probability, feel ourselves safe from arithmetical
blunders at least.

§ 3. Integrals with Legendre Functions

~ There are three simple integral relations between associated
Legendre functions, which are necessary for the calculations in § 5.
For the convenience of others, I will state them here, because I was
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not able to discover them in any of the places I searched. We use
the customary definition,

d»P, (cos @)

(121) P7 (cos §) =sin™ § @oos O
Then the following holds,

" . 2 (n+m)!
(122) j; [P (cos O)]Psin 0 df =52 gn _m;!

(the normalising relation).
Moreover,
(123) [ ”P’,,': (cos 8)P™ {cos §) cos 8 sin 6 d6 =0
0

for {n —n'] +1.
On the other hand,

(124) j: Py (cos B)Py_; (cos 8) cos 0 sin 6 df

_nim 2(n +m)! .

" 2n+1 (4n2-1)(n -m ~1)!
The last two relations decide the “ selection ”’ of the determinantal
terms on page 95 of the text. They are, moreover, of fundamental
importance for the theory of spectra, for it is obvious that the selection

principle for the azimuthal quantum number depends on them (and
on two others which have sin? § in place of cos @ sin 8).

] TP™_, (cos 6)]?sin 6 df =
0

Addition at Proof Correction

Hr. W. Pauli, jun., informs me that he has arrived at the following
closed formulae for the total intensity of the lines in the Lyman and
Balmer series, through a modification of the method given in section 2
of the Appendix. For the Lyman series these are

11\ 7. (1-1)5-1,
na=Hop)i =T

and for the Balmer series

1 1 43 (1 -2)2-3
"L2=R(§'§—fi); Jl,zm—l.—(%‘:g)%fﬁ(?»lz—é)(f)lz—'é).

The total emission intensities (square of amplitudes into fourth power
of the frequency) are proportional to these expressions, within the
series in question. The numbers obtained from the formula for

the Balmer series are in complete agreement with those given on
pp. 91, 92.

Ziirich, Physical Institute of the University.
(Received May 10, 1926.)



