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By a canonical transformation on the Dirac Hamiltonian for a
free particle, a representation of the Dirac theory is obtained in
which positive and negative energy states are separately repre-
sented by two-component wave functions. Playing an important
role in the new representation are new operators for position and
spin of the particle which are physically distinct from these
operators in the conventional representation. The components of
the time derivative of the new position operator all commute and
have for eigenvalues all values between —c and c. The new spin
operator is a constant of the motion unlike the spin operator in the
conventional representation. By a comparison of the new Hamil-
tonian with the non-relativistic Pauli-Hamiltonian for particles of
spin ~, one finds that it is these new operators rather than the

conventional ones which pass over into the position and spin
operators in the Pauli theory in the non-relativistic limit.

The transformation of the new representation is also made in
the case of interaction of the particle with an external electro-
magnetic field. In this way the proper non-relativistic Hamiltonian
(essentially the Pauli-Hamiltonian) is obtained in the non-
relativistic limit. The same methods may be applied to a Dirac
particle interacting with any type of external field (various meson
fields, for example) and this allows one to find the proper non-
relativistic Hamiltonian in each such case. Some light is cast on
the question of why a Dirac electron shows some properties
characteristic of a particle of finite extension by an examination
of the relationship between the new and the conventional position
operators.

INTRODUCTION

~ ~

~FREE Dirac particle of mass rn is described by a
four-component wave function 4 satisfying the

Dirac equation,

H+= (Pm+a p)% =i(8+/Bt), (1)

where p is the momentum operator for the particle,
e and P are the well known Dirac matrices (assumed
here to be in their usual representation with P diagonal),
and units have been used in which h and c are unity.
The eigenfunctions of the Hamiltonian operator satisfy
the equation:

(8m+~ p)4=~4.

The eigenfunctions are of the form u(p)e ~'*. For each
value of the momentum p there are four linearly inde-
pendent spinors' u(p) corresponding to the two eigen-
values &(m'+ p') & of the energy and the two eigenvalues
&1 of the s component of an operator X (dehned later
in Eq. (26)) related to the spin operator for the particle.

Except in certain trivial cases, for a given sign of the
energy at least three of the components of N(p) are
difI'erent from zero. However, two of the four com-
ponents go to zero as the momentum goes to zero, while
at least one of the other two components remains finite.
In the above representation, for positive-energy eigen-
functions, the last two (or lower) components vanish
with vanishing momentum, while for negative-energy

* Supported by the AEC and the ONR.
t Now at the Zeeman Laboratory, University of Amsterdam,

Amsterdam, Holland.
' See, for example, %.Heitler, The Quantum Theory of Radiation

(Oxford University Press, New York, 1944), Chapter 3. Ke shall
use the term spinor for any four-component column (or row)
matrix occurring in the Dirac theory.

eigenfunctions, the first two (or upper) components
vanish with vanishing momentum.

Of course any spinor 4' may be split into the sum of
two spinors 4 and X, having only upper and lower com-
ponents respectively, in the following manner:

@=I+X, C = (1+P/2)4', X= (1—P/2)%',

but the spinors 4 and X do not represent states of
definite energy in the above representation.

In the non-relativistic limit, where the momentum of
the particle is small compared to m, it is well known
that a Dirac particle (that is, one with spin —.', ) can be
described by a two-component wave function in the
Pauli theory. The usual method of demonstrating that
the Dirac theory goes into the Pauli theory in this
limit makes use of the fact noted above that two of
the four Dirac-function components become small when
the momentum is small. One then writes out the
equations satisded by the four components and solves,
approximately, two of the equations for the small corn-

ponents. By substituting these solutions in the remain-

ing two equations, one obtains a pair of equations for
the large components which are essentially the Pauli
spin equations. '

The above method of demonstrating the equivalence
of the Dirac and Pauli theories encounters difhculties,
however, when one wishes to go beyond the lowest order
approximation. One then 6nds that the "Hamiltonian"
associated with the large components is no longer Her-
mitian in the presence of external fields because of the
appearance of an "imaginary electric moment" for the
particle. Furthermore, all four components must again
be used in calculating expectation values of operators to

' See, f'or example, W. Pauli, Handbuch der I'hysik, 2. AuQ. , Bd.
24, Teil 1.
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order sz/c'. Apart from these difEculties, however, there
are some serious questions concerning the properties of
corresponding operators in the Dirac theory and the
Pauli theory even in lowest order. Thus, in the Dirac
theory the operator representing the velocity of the
particle is the operator e whose components have only
the eigenvalues ~1. On the other hand, in the Pauli
theory the operator representing the velocity of the
particle is taken to be p/m whose components have
eigenvalues embracing all real numbers. Furthermore,
different components of the velocity operator in the
Dirac theory do not commute and therefore are not
simultaneously measurable with arbitrary precision,
while different components of the velocity operator in
the Pauli theory do commute and can therefore be
measured simultaneously with arbitrary precision. One
can well ask how the operators which purportedly repre-
sent the same physical variable in the two theories
can have such completely different properties.

One can conclude from the above discussion that the
relation between the Dirac theory and the Pauli theory
is by no means clear from the usual method of de-
scending from four- to two-component wave functions,
and that further clarjL6cation of the connection between
the theories would be desirable. In what follows we
present an alternative method for passing from four- to
two-component wave functions in the Dirac theory
which alternative method clarifies many of the questions
left open by the usual treatment. The method consists
of a transformation to a new representation for the
Dirac theory, putting the theory in a form closely
analogous to the Pauli theory and permitting a direct
comparison of the two. Specifically, we shall show that:

(1) For a free Dirac particle there exists a representa-
tion of the Dirac theory in which, for both relativistic
and non-relativistic energies, positive-energy states and
negative-energy states are separately described by two-
component wave functions.

(2) There exists in the Dirac theory another position
operator than the usual one; this operator has the
property that its time derivative is the operator
p/(m'+P') & for positive-energy states and —y/(m'+ p'-) &

for negative-energy states corresponding to the con-
ventional concept of the velocity of the particle. It is
this new position operator (which we call the mean
posilion operator) that in the non-relativistic limit is
interpreted as the position operator of the Pauli theory.

(3) While the z component of the spin operator,
e= (1/2i) Le)&e], in the Dirac theory is not a constant
of the motion, there exists in the Dirac theory another
spin operator X (which we call the @sean spin opera-tor)
whose s component is a constant of the motion. In the
non-relativistic limit, the operator X is the one which
is interpreted as the spin operator in the Pauli theory.

(4) From a study of the transformation to the new
representation further insight can be obtained into the
question of why the Dirac particle has a magnetic
moment and why it appears to show a behavior charac-

teristic of a particle with 6nite extension of the order
of its Compton wave-length.

(5) In the presence of interaction, such as with an
external electromagnetic Geld, one can still make a
transformation which leads to a representation involv-
ing two-component wave functions. The transforma-
tion, which previously could be made exactly, must now
be made by an in6nite sequence of transformations
which process leads to a Hamiltonian which is an
in6nite series in powers of (1/m), where m is the mass of
the particle. This series is presumably semi-convergent
in the sense that for given external 6elds, a 6nite
number of terms of the series is a better-and-better
approximation to the exact Hamiltonian, the larger the
value of m. For strong interactions which strongly
couple free-particle states of positive and negative
energy, this representation is of little value; however,
for sufticiently weak interactions, a 6nite number of
terms of the series may be employed to obtain relativistic
corrections to any order in (1/m). In this way one can
obtain the proper non-relativistic limit for the Hamil-
tonian representing a Dirac particle interacting with
any type of external Geld.

0"—e.s@

H'= e'zHe 's ie'z(8e 'z/Bt), —
(3)

(4)

3 An odd operator in the Dirac theory is a Dirac matrix which
has only matrix elements connecting upper and lower components
of the wave function, while an even operator is one having no
such matrix elements. Of the sixteen linearly independent matrices
in the Dirac theory, the matrices 1, p, +=1/2iI e)Cej and pe
are even, while the matrices e, pe, y'= —ia'n'a' and pg are odd.
The product of two even matrices or of two odd matrices is an
even matrix, while the product of an odd matrix and an even
matrix is an odd matrix. The matrix p commutes with all even
matrices and anticommutes with all odd matrices in the Dirac
theory. This last fact allows one to write any matrix as the sum
of an odd and an even matrix in a simple way, namely:

~-g(~+ p~pJ+$ {~—p~pI,
where the first term on the right is the even part of the matrix
and the second term is the odd part of the matrix ~.

THE FREE DIRAC PARTICLE

The essential reason why four components are in
general necessary to describe a state of positive or
negative energy in the representation of the Dirac
theory corresponding to Eq. (1) is that the Hamiltonian
in this equation contains odd operators, '

specifically
the components of the operator e. If it is possible to
perform a canonical transformation on Eq. (1) which
brings it into a form which is free of odd operators, then
it will be possible to represent positive- and negative-
energy states by wave functions having only two com-
ponents in each case, the other pair of components
being identically zero. We shall now show that there
exists a canonical transformation which accomplishes
just this end.

If S is an Hermitian operator, then the transforma-
tion,
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p=e'sTe 's.) (6)

Let us make a transformation of this type on Eq. (1)
with 5 the non-explicitly time-dependent operator:

S= —(i/2m)Pe. pw(p/m),

where w is a function of the operator' (p/m) whose form
is to be determined such that B' is free of odd operators.
VVith this choice of S one may readily show that
gi' ps'~ —i S pe Sgg

=[ cso(Pw/m)+(Pa p/P) sin(Pw/m)]H
=P[m cos(Pw/m)+P sin(Pu/m)]

+a.p/P[P cos(Pw/m) —m sin(Pw/m)]. (g)

We see from this that B' will be free of odd operators
if we choose

u (P/m) = (m/P) tan-'(P/m),

and with this choice, we obtain

a'= P(m'+ p')»= PE„,

where E„represents the oPerator (m'+P')».
Equation (5), with H' given by (10), now has solu-

tions such that the upper components represent positive
energies and the lower components negative energies,
for splitting 4' into its upper and lower components:

O'=C'+X',
C'= (1+P/2)e', X'= (1—P/2)4',

reduces Eq. (5) to the two uncoupled equa, tions:

E„C'= i(84'/8»),

E~'=i (BX'/Bt)—. (12)

In order for one to understand completely the nature
of the transformation which we have performed, how-
ever, it is necessary to investigate in greater detail the
manner in which the wave function and certain opera-
tors transform. A general wave function can be ex-
pressed in the form:

leaves Eq. (1) in the Hamiltonian form:

B'0"= i(8%"/Bt).

(It must be remembered that in a canonical trans-
formation of this type a physical variable whose
operator-representative in the old representation is T
has for its operator-representative in the new repre-
sentation the operator:

t 1 Pm+a p'
4'p(x) = ~ —1+ u(p') exp(ip' x)dp', (14)

J

t
1 Pm+u p'

4' (x) = —1— u(p') exp(ip' x)dp', (15)
E,,

+'=ei 4=4 '+4 ' (19)

We may legitimately identify 4+' with 4' and 0 ' with
X' since the presence of the factors (1+P)/2 and
(1—P)/2 shows that these functions have only upper
and lower components, respectively. Thus we see that
indeed the transformation is such as to lead to a repre-
sentation in which upper components correspond to
positive energies and lower components to negative
energies.

Furthermore, since

u(p') =
(2s.)' ~

@(x') exp( —iy'. x')dx',

where 4'+ represents the positive energy part and 4
the negative energy part of +. Now

(1 Pup p't
e~s exp{ tan-' —

{
&2m p mi

= cos[-', tan —'(P/m)]+ (Pa p/P) sin[-,' tan —'(P/m)]

E„+m» Pe. p E„m»—
+2E„p 2E„

P {Pm+ e.p+ PE~ I
(16)

[2E„(E+m)7»
and hence

(1+P) r 2E„

2 )~ E„+m
Pm+a p'

1+ u(y') exp(ip' x')dp'= 4', (17)
Ey

r1—p) r 2E~'
4 '=o*'4

I 2 Jj Egm
Pm+e p'

)& 1— u(p') exp(ip'. x')dp'=X', (18)
E„

0 (x) = )I u(y') exp(iy'x')dp'= ++(x)++ (x), (13)

4A function T(p) of the operator p is to be interpreted {in the
coordinate representation) as dined by its Taylor expansion in
powers of (p-pf»), where po is any constant vector {cnumber),
wherever the expansion converges, and by the analytic con-
tinuation of this series elsewhere; or, alternatively, by its integral-
operator representation:

T{p)4'{x)=
2 ~ T{p') exppip'- {x—x') ge{x')dp'dx'.1

we have

where
r~ 2E„.

E(x, x') =
(2s)' " E„+m

P(Pm+a y')
X i+

(2o)

exp(ip'. (x—x'))dp'. (21)
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iPa iP(a p)p [aXp]P
+ (22)

2E„2E~(E,+m) p
x etsxe 'sI

But if this is the case, then what is the operator-repre-
sentative X in the old representation of the physical
variable whose operator-representative in the new
representation is X'=x? We find

iPa iP(a p)p+[aXp]P
X= e—'sxe's =x+ (23)

2E~ 2E~(E~+m) p

In order to interpret this new "position" operator, we
calculate its time derivative:

dX p I pm+a y}
=i[H, X—]=—. (24)

dt E~ E~

But since Ap= (Pm+a p)/E„has the value +1 when
applied to a positive energy wave function and the
value —1 when applied to a negative energy wave
function, ' we see that the time derivative of X is just
the "conventional" velocity operator +p/E~ for
positive energy states and y/E„ for negative e—nergy
states The o.perator-representative of dX/dt in the
new representation is

dX'/dt=dx/dt=i[H', x]=Py/E, (25)

with the same properties. Ke note also that since the
operator p commutes with S, the operator-representa-
tive for the momentum in the new representation is
still p.

By comparing these results with certain well-knowq
facts about the Dirac electron, we may understand the
significance of our change in representation. In dis-
cussions of the Dirac theory one Gnds an analysis of the
motion of a free Dirac electron which shows that the
electron performs a very complicated motion, indeed. '

~ E. Schrodinger, Berl. Ber. 419 (1930); 63 (1931).' See, for example, P. A. M. Dirac, The Priecip/es of Quantum
Mechanics (Oxford University Press, New York, 1935},Second
Edition, Chapter XII. See also in this connection, reference 2, pp.
230-231 ~

Since E(x, x ) is not a Dirac delta-function in its space
dependence, the transformation of 0' is an integral
rather than a point transformation. In general, 4' at a
given point is constituted from contributions depending
on + over a neighborhood of dimensions of the order of
a Compton wave-length of the particle about the point.
Thus a wave function which in the old representation
corresponded to a state in which the particle was
definitely located at one point, passes over in the new
representation into a wave function which apparently
corresponds to the particle being spread out over a
finite region.

The key to understanding this rather unusual state-
ment lies in the fact that in the new representation, the
operator-representative for the position of the particle
is no longer the operator x, but the rather complicated
operator:

but to this is added a second term representing a rapidly
oscillating motion ("Zitterhewegung") which ensures
that a measurement of the instantaneous value of any
velocity component shall yield the velocity of light.
Our results above show that a corresponding division of
the position operator for the particle is also possible, the
first part X (in the old representation) representing a
sort of mean position of the particle, and the second
part X—x, oscillating rapidly about zero with an am-
plitude of the order of the Compton wave-length of the
particle. While in the old representation the position
operator x played the dominant role, in the new repre-
sentation it is the position operator X', which we shall
call the meun posil-ion operator, ' which plays the domi-
nant role. Also, as mill become obvious later when we
consider the interaction of the particle with an external
field, it is the meun position-operator which is identified
with the position operator in the non-relativistic Pauli
theory.

The modification in the interpretation of operators
involved in our transformation does not end here,
however, but new angular momentum operators also
appear. In the old representation, the orbital angular
momentum of the particle whose operator-representa-
tive is [xXp] and the spin angular momentum of the
particle whose operator-representative is 1/2a are not
separately constants of the motion, ' although their
sum is a constant of the motion. However, as one may
readily verify, the operators [XXy] and

iP[aXp] [pX[axp]]X=e—
E, E„(E,+m)

(26)

whose analogues in the new representation are, respec-
tively,

[X'Xp]=e' [XXp]e 's= [xXp], (27)

X'=e'sXe 's=e (2g)

'The operator, which we have designated the mean-position
operator, has been discovered independently in other connections
by several authors. M. H. L. Pryce (Proc. Roy. Soc. 150A, 166
(1935)) found it useful to introduce this operator (as well as the
operator which we later define as the mean spin angular momen-
tum) in connection with the definition of coordinate and intr'insic
angular momentum operators in the Born-Infeld theory, and again
(Proc. Roy. Soc. 195A, 62 (1948}) in a discussion of relativistic
de6nitions of center of mass for systems of particles. In the latter
paper, he also noted that this operator was connected with the
usual position operator in the Dirac theory by a canonical trans-
formation which is identical with the one performed above in this
paper. T. D. Newton and E. P. signer (Rev. Mod. Phys. 21, 400
(1949)) also found this operator in an investigation of localized
states for elementary systems. The latter authors have also shown
that this is the only position operator, with commuting com-
ponents, in the Dirac theory which has locahzed eigenfunctions
in the manifold of positive energy wave functions.

Its velocity can be written as the sum of two parts: the
first is essentially the conventional velocity operator

p pm+a p
)

E„ E„
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Tmxz I. Table of operator-representatives of dynamical variables in old and new representations.

Dynamical variable

Position

Momentum

Hamiltonian

Velocity

Orbital angular momentum

Spin angular momentum

Mean position

Mean velocity

Mean orbital angular momentum

Mean spin angular momentum

Operator-representative in old
representation

p—= (h/i) y
H=Pm+e p

fxXpj

e=(1f2i)feXaj

iPe iP{e p)p+feXpjP="+2E, 2E,(E,+m) p

p Pm+a p

fXXp]
itefeXpj fpX fo'XpjjE„E„(E,+m)

Pm+a p

Operator-representative in new
representation

iPe+iP(e p)p —fXpjP
2' 2E~{E~+m)p

p=p
e'= p(m&+ p }~—=pE,

+Pp (e p)p+E„E(E„+m)
e'=(~e-e-p)/E.

[x'Xp]
ip[eXp] pX[eXp]~+ E, E„(E,+m)

PpX'=—

fX'Xpj= fxXpj

are separately constants of the motion. %e shall denote
the physical variables of which these operators are the
operator-representatives as the meae-Orbital angular
momentum and mean spin angular momentum, respec-
tively, of the particle. It is again these variables which
are conventionally identified with the orbital angular
momentum and the spin angular momentum of the
particle in the non-relativistic Pauli theory. For con-
venience, we have listed in Table I the operator-repre-
sentatives in the old representation and in the new
representation of the physical variables of principal
interest in the Dirac theory.

DIRAC PARTICLE IN AN EXTERNAL
ELECTROMAGNETIC FIELD

%e consider now the case where a Dirac particle
interacts with an external field such as the electro-
magnetic field. Before proceeding to the general case,
however, it is instructive to consider an elementary
special case in order to clarify some points regarding
the classifica, tion of states as either of positive or nega-
tive energy. Let us consider first a Dirac particle moving
in a weak static electric field derivable from a scalar
potential p. The Hamit. tonian is then

H=Pm+e p —ey.

For the case of a free particle, states were classified as of
positive or negative energy according as they corre-
sponded to values of +1 or —1, respectively, for the
operator (Pm+a p)/E~ which was a constant of the
motion. In the present case, however, this operator does
not commute with the Hamiltonian and is therefore
not a constant of the motion. If we regard the electric

field as a perturbation, then one can say that the electric
field induces transitions of the particle between the
positive- and negative-energy states of a free particle.
This is one way of viewing the physical situation.

On the other hand, one knows that for sufliciently
weak fields the Hamiltonian above possesses a com-
plete set of eigenfunctions with energy eigenvalues
which may be classified according to whether they are
positive or negative. There exists for these weak fields
a clear-cut distinction between these two sets of sta-
tionary states' since they are separated by a relatively
large energy gap of order 2m. Furthermore, the wave
functions corresponding to positive energies show a
behavior of the particle appropriate to a particle of
positive mass, ' in that the particle tends to be localized
in regions of low potential energy; while the negative-
energy solutions show a behavior of the particle appro-
priate to a particle of negative mass, in that the particle
tends to be localized in regions of high potential energy.

Either of the two descriptions of the behavior of the
particle in a weak field given above is of course correct,
although the distinction between what are called posi-
tive- and negative-energy states is diferent in the two
descriptions. However, the question of terminology for
positive- and negative-energy states being left to our
own choice, we are free to choose our definitions in such
a way as to give the more graphic (and perhaps more

It is assumed that the constant in the energy is chosen so that
zero energy occurs approximately midway in the energy gap
between the two sets of states.' It is perhaps better to classify the states as states of positive
or negative mass rather than energy, since the addition of a
constant to the energy (by adding a constant to q, for example)
may upset energy classification but not the mass classification.
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intuitively satisfying) description of the actual physical
events which are being described. In this spirit we feel
that the second description is to be preferred since it
has a perfectly reasonable classical limit. It mould be
dificult indeed to picture classically the motion of a
particle in a weak field in terms of transitions between
free-particle motions with positive and negative mass.

Consider now what happens when the particle inter-
acts with strong rather than weak fields. Under such
circumstances, the division of states into those of
positive and negative mass is no longer clear-cut, since
the energy, separation of the two sets of states is
reduced to a relatively small amount. Furthermore, the
wave functions describing these states no longer appro-
priately describe the motion of a particle of fixed sign
of mass according to our customary notions. In fact, if
we try to interpret the wave function in these terms,
we encounter certain well-known paradoxes —the Klein
paradox, for example. While the energy of any sta-
tionary state will still have a definite sign, the state-
ment that the particle is in a state of positive energy
will no longer carry with it the validity of any intuitive
conceptions as to the behavior of a classical particle
with positive energy, and there will be little quali-
tative difference between certain states of positive
energy and certain states of negative energy. Hence, in
the presence of strong fields, the usefulness of a de-
scription in terms of positive and negative-energy states
will be lost.

These same ideas may be carried over to the case of
more general interactions. If there are any advantages
to be accrued by the employment of two-component
wave functions to describe states of positive and nega-
tive energy for a free particle, we may expect these
advantages to be present still in the case of weak inter-
actions, but they can scarcely survive in the case of
strong interactions. To define weak interactions in a
more quantitative fashion, we prescribe that the inter-
action terms have no time Fourier components com-
parable with or greater than m, so that no transitions
between free-particle states with energy differences of
this latter order of magnitude are possible; and that the
interaction terms have no space Fourier components
comparable with or greater than m, so that no transi-
tions between free-particle states with momentum
difFerences of this order of magnitude are possible.
Under these conditions, if the initial state is one in
which no high momentum states occur, then the mo-
mentum of the particle will remain small compared to
m under the inQuence of the interactions. In these cir-
cumstances we have essentially a non-relativistic
problem, and hence it will be in the domain of non-
retatisistic praMems that a representation by means of
two-component wave functions may be expected to be
of value.

In the presence of interaction it no longer appears
possible to make a single, simple, canonical trans-
formation to a representation in which the Hamiltonian

is free of odd operators, but instead one can always make
a sequence of transformations, each of which eliminates
odd operators from the Hamiltonian to one higher order
in the expansion parameter" 1/m. In this way one
obtains in the new representation a Hamiltonian free
of odd operators which is an infinite power series in
powers of 1/m. While it can hardly be expected that
this series is convergent, the series is presumably an
asymptotic or semi-convergent series in the sense that
the sum of a finite number of terms of the series is a
better-and-better approximation to the true Hamil-
tonian, the larger the value of m, provided the magni-
tude of the interaction remains fixed. The usefulness
of the series is then contingent on the interactions being
sufBciently weak compared to m in just the sense
described above for non-relativistic problems.

Turning our attention now to the explicit calculation
in the case where a Dirac particle is subject to inter-
actions, we note first that the Hamiltonian operator can
always be put in the form'

p= pm+8+ 8, (29)

where b is an even operator and 8 is an odd operator,
both of which may be explicitly time-dependent. We
assume (and this is ordinarily the case) that h and 8
a,re of no lower order in (1/m) than (1/m)'. Consider
now the canonical transformation generated by the
Hermitian operator

S= —(i/2m)P e. (3o)

We note that if the operator S may be regarded as
small, then we can make an expansion in powers of
(1/m) of the Hamiltonian in the new representation:

(ge—is)
Ep= e'slee 's ie's~—

at &

BS 1 BS
=H+—+i S, H+——

Bt 2 Bt

i' 18S
+—S, $, 8+——+. . (31)

2J 3 at

Carrying this out explicitly for the Hamiltonian above
and retaining terms only to order (1/m)', we obtain

P 1 86
H'= pm+8+ e' — 8, [n, h]+

2m Sm2 N

j. 88 p 1——P +—[6, 8)— n'y ", (32)
2m Bt 2' 3el2

"The expansion parameter may equally well be regarded as 1/c
where c is the velocity of light. The actual dimensionless expansion
parameters are the operators (A/mc)~ and (h/mc')(8/Bt). From
this, one sees that the successive terms of the series will decrease
rapidly in magnitude if the interaction potentials do not vary
appreciably in space over a Compton wave-length of the particle
and in time over the period required for light to travel a Compton
wave-length. This is equivalent to the restrictions imposed above
on the space and time Fourier components of the jnteraction,
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where we have made use of the fact that P commutes
with all even operators and anticommutes with all odd
operators in the Dirac theory. Remembering that the
product of two even or two odd operators is an even
operator and that the product of an odd and an even
operator is an odd operator, we see that we have re-
moved by this transformation all odd operators of order
(1/m)' from the Hamiltonian although odd operators of
order (1/m) and higher remain and are given in the
second line.

From this we see that by a sequence of further
canonical transformations, the generator of the trans-
formation at each step being chosen to be

S= —(i/2m) p (odd terms in Hamiltonian of
lowest order in 1/m), (33)

we may successively remove odd terms from the Hamil-
tonian to any desired order in (1/m). If we continue
this process inde6nitely, we obtain, as mentioned earlier,
a Hamiltonian which is an infinite power series in (1/m)
completely free of odd operators.

I.et us now apply this method to the case where the
Dirac particle interacts with an external electromag-
netic 6eld. In this case the Hamiltonian is given by

H=pm —eq+a (p —eA), (34)

where y and A are the scalar and vector potentials of
the electromagnetic field evaluated at the position of
the particIe. In accordance with the procedure outlined
above, we then 6rst make the canonical transformation
generated by

Si——— Pc (p —eA),
2m

obtaining then for the new Hamiltonian,

a,= pm e&+ —(p e—A)' — p~—H
2m 2m

e e ie
a EX(p—eA)+ divE — Pe E

4m' Sm2 2m

1
[(y—eA)' —ee H]e (p—eH)+

jm2

to terms of order (1/m)'. Following with the two canon-
ical transformations generated by

i f'e

S2= — p — pa E
2m 2m

i e BE
Ss= —p — pe'

2m 4m' Bt

1

1
L(p —eA)' —ee.H]e. (p—eA),

3m2

we eliminate odd operators from the Hamiltonian of
order (1/m) and (1/m)' respectively and obtain the
Hamiltonian

e
H3= pm eq—+ (p—eA—)' —pe H

2m 2m

e e
o EX (p—eA)+ divE+ ., (35)

4m' 8m'

+
8m'

BC'
divE C =i, (36)

Bt

which will be recognized as essentially the Pauli equa-
tions for a non-relativistic particle of spin —, interacting
with the electromagnetic 6eld. The presence of the
terms corresponding to the interaction of the anomalous
magnetic moment of the particle with the magnetic
Geld and the spin-orbit interaction is evident. The term
proportional to divK is a well-known correction" to the
Pauli theory arising from the Dirac theory, and it is
responsible for a relativistic shift of the 5 levels in the
hydrogen atom (not to be confused with the Lamb-
Retherford line shift).

The reason for the explicit appearance of these addi-
tional interaction terms (as well as further terms of
higher order in 1/m) in the new representation can now
be understood in the light of our physical interpretation
of the transformation to the new representation. In the
old representation the Dirac particle interacted with
the electromagnetic 6eld only at its position. However,
a particle which in the old representation was located
at a point is in the new representation spread out over
a region of dimensions of the order of a Compton wave-
length in the space of its mean-position variable, X'=x.
But in the new representation the interaction between
the particle and the electromagnetic 6eld is expressed
in terms of the values of the electromagnetic-Geld quan-
tities at its mean position Hence, one-must e.xpect a
series of correction terms of the nature of a multipole

"C. G. Darwin, Proc. Roy. Soc. 118A, 654 (1928).

free of odd operators to order (1/m)'. In the above
8=curlA and E= —Vqr —BA/Bi are the magnetic and
electric 6eld strengths evaluated at what is now essen-
tially the mean posi-tion of the particle. By further
canonical transformations we could remove odd
operators of still higher order, but we shall limit our
discussion of the Hamiltonian in the new representation
to terms of order (1/m)'.

Since the Hamiltonian (36) is free of odd operators,
its eigenfunctions are two-component functions cor-
responding again to positive and negative energies. For
positive energies, the Schrodinger equation is

1 e e
m —ey+—(p—eA)' — o"8— o EX(y—eA)

2m 2m 4m2
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expansion of the Geld, since the particle is actually
spread out over a finite region in the space of its meae-
positioe variable F.rom this point of view the explicit
appearance of the magnetic-moment interaction and
the accompanying spin-orbit interaction in the Hamil-
tonian is to be expected. In fact, the term in divE,
which has previously been regarded as of rather mys-
terious origin, can now also easily be understood since
it comes from the fact that the electric charge in the
new representation is also spread out over a Gnite
region. In a static potential, the particle then moves
according to a suitable average of the potential over
this region. But in lowest order such an averaging
process is known to lead to a term proportional to the
I.aplacian of the potential and this is just the character
of the term in divE.

(In employing a finite number of terms in a Hamil-
tonian such as (35) it must be remembered that wave
functions, transition matrix elements, and expectation
values of operators computed from the Hamiltonian are
only correct to terms of the order in (1/m) to which
terms in the Hamiltonian are retained. Thus in the case
of (36) it would not be consistent to retain only terms of
order (1/m) in the Hamiltonian and then to employ
terms of this order in second-order perturbation theory
where they generate terms of order (1/m)'. )

The method employed above for reducing the Hamil-
tonian to non-relativistic two-component form for the
case of interaction with an external electromagnetic
Geld can be employed generally for interaction of a
Dirac particle with any type of external Geld, such as
various types of meson Gelds. With meson Gelds one
obtains, in diGerent cases, various types of spin inter-
action with the meson field and also various types of
spin-orbit coupling terms such as have been employed
in discussions of spin-orbit coupling in nuclei. The dis-
cussion of the reduction to non-relativistic form in the
case of the many-particle theory is left for a later com-
munication.
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The Nucleon Magnetic Moment in Meson Pair Theories
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The contribution to the nucleon magnetic moment from an interaction of the nucleon with a spinor or
scalar meson pair Geld is calculated. In both cases it is found to be logarithmically divergent.

'HE covariant formulation of the pseudoscalar
meson theory' together with the concepts of

mass and charge renormalization' were applied by Case'
to the computation of the anomalous magnetic moment
of nucleons. He showed that finite results are then
obtained. This is essentially due to the fact that one is
now able to isolate and incorporate' the divergences
into the mass and charge of the nucleon field thus
leaving a convergent expression for the magnetic mo-
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ment. This separation of the reactive terms represents
an improvement over the previous treatment of this
and related problems. 4 On the other hand, divergence
difhculties are still encountered in the magnetic moment
calculation based on the vector meson theory with
tensor coupling.

It is the aim of this note to report on the application
of the renormalization program to the computation of
nucleon magnetic moments by assuming a meson pair
interaction (containing no derivatives of the fields)
between the heavy particles. Two cases have been
considered for the meson field, namely, the scalar (or
pseudoscalar, which here amounts to the same) and the

4 Finite results for the nucleon magnetic moment were previ-
ously obtained by J. M. Jauch (Phys. Rev. 63, 334 (1943)) in
the conventional theory by using the lambda-limiting process;
the nucleon Geld was treated non-relativistically.

~ K. M. Case, Phys. Rev. 75, 1440 (1949).


