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We take a page from Landau and Lifshitz [1], (Sec. 10, Mechanical Similarity, pp. 22-24) to

investigate scaling in Quantum Mechanics.

I. SCHRODINGER EQUATION

The classical hamiltonian for a single particle can often
be written in the form
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Here the homogeneous potential V = Kr*, where K
is a coupling constant (for gravitational problems K =

—~GMm, for attracting Coulomb problems K = —e?).

For another particle in a similar potential we have H' =
2

p

o + K’ ' If the two physical systems are related by a
scale transformation, solutions for either can be mapped
to solutions of the other. Accordingly we assume the
scaling relations

E' = )\E
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The relation p’ = a~!'p follows from the invariance of
the commutator (either the classical Poisson bracket or
the quantum commutator [g;, p;] = ¢h). The time-energy
conjugacy similarly requires S\ = 1. The Schrodinger
equation for the ’ system is
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Observe first that both sides of this equation are linear
in the wavefunction scaling factor e. This comes about
because Quantum Mechanics is a linear theory. This is
not to say that € cannot be computed. It is determined
by the normalization condition:
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Both terms on the right hand side must be +1, so that
— ~—3/2
€=q .

Scaling requires the following relations

M tiys =1 ?ya=1 (5)
II. APPLICATIONS

Example 1: Assume a Coulomb potential, so that
k= —1 and ayd = 1. Assume further that m scales
but the coupling constant does not: v # 1,0 = 1. Then
ay =1 and aX = 1, so that ¥ = A = 1/a. Suppose
that the electron is replaced by a mu meson: e~ — u~
in a hydrogenic atom. With o = m,/m. ~ 207, these
scaling relations tell us that the nonrelativistic energy
spectrum for the mesic atom is similar to that of the
hydrogen atom, scaled by a factor 207. The atomic size
is reduced by this same factor. The ground state p-mesic
orbit radius is approximately 0.529/207 Angstroms.

Example 2: Again with a Coulomb potential, assume
K scales but m does not: v =1,0 = Z # 1 for an atomic
nucleus containing Z protons. Under these assumptions
the scaling relations become aZ =1, «o?X =1, so that
a=1/Z and \ = Z*%.

Partial Results: Example 1 shows that the energy
is proportional to the mass. Example 2 shows that it is
proportional to Z2. Since Z occurs in H coupled to e?,
the energy is proportional to (Ze?)?: E ~ m(Ze?)?.

Example 3: We could further zero in on the nature
of the energy eigenvalues by looking at the scaling of the
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(a recommended useful exercise) we find E ~ 1/h2.

Further Results: Including the results of Example 3
with the partial results above, we find E ~ m(Ze?)?/h?.
Finally, recalling that e?/hc is a dimensionless constant
(€2/hc = a = 1/137.03611... ~ 0.007... = Sommerfeld’s
fine structure constant) we can write the expression for
nonrelativistic Coulomb energy as

E ~mc*(Za)* ~ 510,000eV * Z2/(137)? (6)

All that is left to detailed calculations is the structure of
the discrete spectrum, Ex = —mc?(Za)?/(2N?), where
N =1,2,--- is the principal quantum number.

[1] L. D. Landau and E. M. Lifshitz, Mechanics, (J. B. Sykes,
J. S. Bacon, and J. S. Bell, translators), Reading, MA:

Addison-Wesley, 1960.



