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We take a page from Landau and Lifshitz [1], (Sec. 10, Mechanical Similarity, pp. 22-24) to
investigate scaling in Quantum Mechanics.

I. SCHRÖDINGER EQUATION

The classical hamiltonian for a single particle can often
be written in the form

H =
p2

2m
+Krk (1)

Here the homogeneous potential V = Krk, where K
is a coupling constant (for gravitational problems K =
−GMm, for attracting Coulomb problems K = −e2).
For another particle in a similar potential we have H′ =
p′2

2m′ +K ′r′k. If the two physical systems are related by a
scale transformation, solutions for either can be mapped
to solutions of the other. Accordingly we assume the
scaling relations

r′ = αr p′ = α−1p t′ = βt E′ = λE
m′ = γm K ′ = δK ψ′ = εψ

(2)
The relation p′ = α−1p follows from the invariance of
the commutator (either the classical Poisson bracket or
the quantum commutator [qi, pj ] = i~). The time-energy
conjugacy similarly requires βλ = 1. The Schrödinger
equation for the ′ system is

(
p′2

2m′
+K ′r′k

)
ψ′ = E′ψ′ →

(
1
α2γ

p2

2m
+ αkδV

)
εψ = λεψ

(3)
Observe first that both sides of this equation are linear

in the wavefunction scaling factor ε. This comes about
because Quantum Mechanics is a linear theory. This is
not to say that ε cannot be computed. It is determined
by the normalization condition:

∫
|ψ|2d3r = 1→

∫
|ψ′|2d3r′ = α3ε2︸︷︷︸ ∫ |ψ|2d3r︸ ︷︷ ︸ = 1 (4)

Both terms on the right hand side must be +1, so that
ε = α−3/2.

Scaling requires the following relations

αk+2γδ = 1 α2γλ = 1 (5)
II. APPLICATIONS

Example 1: Assume a Coulomb potential, so that
k = −1 and αγδ = 1. Assume further that m scales
but the coupling constant does not: γ 6= 1, δ = 1. Then
αγ = 1 and αλ = 1, so that γ = λ = 1/α. Suppose
that the electron is replaced by a mu meson: e− → µ−

in a hydrogenic atom. With α = mµ/me ' 207, these
scaling relations tell us that the nonrelativistic energy
spectrum for the mesic atom is similar to that of the
hydrogen atom, scaled by a factor 207. The atomic size
is reduced by this same factor. The ground state µ-mesic
orbit radius is approximately 0.529/207 Angstroms.

Example 2: Again with a Coulomb potential, assume
K scales but m does not: γ = 1, δ = Z 6= 1 for an atomic
nucleus containing Z protons. Under these assumptions
the scaling relations become αZ = 1, α2λ = 1, so that
α = 1/Z and λ = Z2.

Partial Results: Example 1 shows that the energy
is proportional to the mass. Example 2 shows that it is
proportional to Z2. Since Z occurs in H coupled to e2,
the energy is proportional to (Ze2)2: E ' m(Ze2)2.

Example 3: We could further zero in on the nature
of the energy eigenvalues by looking at the scaling of the
fine structure constant: ~→ ~′ = φ~. Following through
(a recommended useful exercise) we find E ' 1/~2.

Further Results: Including the results of Example 3
with the partial results above, we find E ' m(Ze2)2/~2.
Finally, recalling that e2/~c is a dimensionless constant
(e2/~c = α = 1/137.03611... ' 0.007... = Sommerfeld’s
fine structure constant) we can write the expression for
nonrelativistic Coulomb energy as

E ' mc2(Zα)2 ' 510, 000eV ∗ Z2/(137)2 (6)

All that is left to detailed calculations is the structure of
the discrete spectrum, EN = −mc2(Zα)2/(2N2), where
N = 1, 2, · · · is the principal quantum number.
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