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SOLUTION, (a) Py, Py, M. (if the plane is the xy-plane), (b) M., P; (if the axis of
cylinder is the z-axis), (¢} P, (if the edges of the prism are parallel to the 2
(d) M. (if the line Joining the points is the z-axis), (e) Py (if the edge of the h
plane is the y-axis), (f) M, (if the axis of the cone is the z-axis), (2) M. (if the
of the torus is the 2-axis), (h) the Lagrangian js unchanged by a rotation through an an,
¢ about the axis of the helix'(let this be the Z-axis) together with a translation throug
distance ©8¢/2:r along the axis (% being the pitch of the helix). Hence 3L = 3z oL /8zE
+38¢4 aL/op = S(hP:[2n DI ,) — 0, so that M;+kP,/27 — constant, '

Such cases include those where the potential energy is a homogeneous
function of the co-ordinates, i.e. satisfies the condition

Ulors, ars, ... axn) = abUfey, s, .. T2, (10.1) |

where o is any constant and the degree of homogeneity of the function,
Let us carry out a transformation in which the co-ordinates are changed by

afactor & and the time by a factor Birg > ar,, ¢ - Bt. Then all the velocities iI.Je
Vo = dr,/d¢ are changed by a factor /B, and the kinetic energy by a factor Hn
a2/B2, The potential energy is multiplied by «*. If ¢ and B are such that
®P[B2 = o, ie. B = ql- then the result of the transformation is to multiply
the Lagrangian by the constant factor «F, i.e. to leave the €quations of motion
unaltered. .
A change of all the co-ordinates of the particles by the same factor corre- I,t !
sponds to the replacement of the Paths of the particles by other paths, geometri- tiot
cally similar but differing in size. Thus we conclude that, if the potential energy
of the system is a homogeneous function of degree £ in the (Cartesian) co-
ordinates, the equations of motion permit a series of geometrically similar
paths, and the times of the motion between corresponding points are in the
ratio | 1
£t = ()ly-be (10.2) o ¢
’ . | the
where '/l is the ratio of linear dimensions of the two paths. Not only the times . Iep
but also any mechanical quantities at corresponding points at corresponding - Ing
times are in a ratio which js a power of I'/l. For example, the velocities,
energies and angular momenta are such that _
Vo = (/D E'|E = (I'[Dk, MM = (I'[i+k, (10.3) if 1
The following are some examples of the foregoing. Velc'
As we shall see later, in small oscillations the potential energy is a quadratic rel
function of the co-ordinates (2 = 2). From (10.2) we find that the period of
such oscillations is independent of their amplitude. Ty
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In a uniform field of force, the potential energy is a linear function of the
co-ordinates {see (5.8)), ie. k= 1. From (10.2) we have '/t = +/(I'[]).
Hence, for example, it follows that, in fall under gravity, the time of fall is as
the square root of the initial altitude.

In the Newtonian attraction of two masses or the Coulomb interaction of
two charges, the potential energy is inversely proportional to the distance
apart, ie. it is a homogeneous function of degree 2 = —1. Then ¢/t

=(l /D)2, and we can state, for instance, that the square of the time of revolu-
tion in the orbit is as the cube of the size of the orbit (Kepler’s third law).

If the potential energy is a homogeneous function of the co-ordinates and
the motion takes place in a finite region of space, there is a very simple relation
between the time average values of the kinetic and potential energies, known
as the wvirtal theorem.

Since the kinetic energy T is a quadratic function of the velocities, we have
by Euler’s theorem on homogeneous functions Xv,+67/ov, = 27T, or, put-
ting 0T/0vg = Pg, the momentum,

! d
g ZT == Zpa,' v“ = _( Zpa' ra)"'" Zra’ ﬁa,. (10.4)
: 1] dt a @

Let us average this equation with respect to time. The average value of any
function of time f (¢) is defined as

T30 o~

_ fim- f f(z) dr.

Tt is easy to see that, if f{z) is the time derivative dF(#)/dz of a bounded func-
tion F(2), its mean value is zero. For~

1+ dF F(z)— F(0

T500 o di T=500 T
o .

Let us assume that the system executes a motion in a finite region of space
d with finite velocities. Then 2p, - 1, is bounded, and the mean value of
first term on the right-hand side of (10.4) is zero. In the second term we
ace Py by —0U/0r, in accordance with Newton’s equations {5.3), obtain-

2T =S 1y 0U]ox,. (10.5)

otential energy is a homogeneous function of degree k in the radius
Tg, then by Euler’s theorem equation (10.5) becomes the required

2T = kU. (10.6)

kpression on the right of (10.5) is sometimes called the wirial of the system.
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Since T+ U = E = E, the relation (10.6) can also be expressed as

U=2E(k+2), T~ KE|(k+2),

which express I and 7T in terms of the total energy of the system,
In particular, for small oscillations (k = 2) we have T = 7,

PROBLEMS

ProsLEM 1. Find the ratio of the times in the same
masses but the same potentia] energy,

SOLUTION. ¢/t = 4/ (m’[m).

PROBLEM 2. Find the ratio of the times in the sam
but potential energies differing by a constant factor.

Sorurion, ¢/t = vV (UIU").

e path for particles having the same mass

path for particles having differen
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