The Continuous Transition from Micro-
to Macro-Mechanics

(Dne Naturunssenschaften, 28, pp. 664-666, 1926)

BuiLping on ideas of de Broglie * and Einstein,? I have {ried to show 3
that the usual differential equations of mechanics, which attempt
to define the co-ordinates of a mechanical system as functions of the
time, are no longer applicable for “small ” systems; instead there
must be introduced a certain partial differential equation, which
defines a variable i (“ wave function ”) as a function of the co-
ordinates and the time. As in the differential equation of a vibrating
string or of any other vibrating system, i is given as a superposition
of pure time harmonic (i.e. ““ sinusoidal *) vibrations, the frequencies
of which agree exactly with the spectroscopic * term frequencies ” of
the micro-mechanical system. For example, in the case of the linear
‘Planck oscillator ¢ where the energy function is

(1) ’-;-‘(%)Hzﬂz%zqu,

when we put, instead of the displacement ¢, the dimensionless variable
2) z=q.27 '/’ﬁ};’i’,

we get ¢ as the superposition of the following proper vibrations : ®

=0~ TH (2)e2rint

9
n= 05 1=0,1,2,3 .. .).

(3)

The H,’s are the polynomials ® named after Hermite. If they are

1 L. de Broglie, Ann. de Physique (10), 3, p. 22, 1925 (Théses, Paris, 1924},

2 A. Einstein, Berlin Ber. 1925, p. 9 ef seq.

3 Ann. d. Physik; the essays here collected. :

4 i.e. a particle of mass m which, moving in a straight line, is attracted towards a fixed
point in it, with a force proportional to its displacement ¢ from this point ; aceording
to the usual mechanics, such a particle executes sine vibrations of frequency v,.

5 { means4/ —~1. On the right-hand side the real part is to be taken, as usual.

8 Cf. Courant-Hilbert, Methoden der mathematischen Physik, I. chap. ii. § 10, 4,
P. 76 (Berlin, Springer, 1924),

41




42 WAVE MECHANICS

r:

multiplied by ¢ % and the “ normalising factor ” (2*n 1)~ they are
called Hermite’s orthogonal functions. They represent therefore the
amplitudes of the proper vibrations.

The first five are represented in Fig. 1. The similarity between this
and the well-known picture of the vibrations of a string is very great.

At first sight it appears very strange to try to describe a process,
which we previously regarded as belonging to particle mechanics,
by a system of such proper vibrations. For this chosen simple
case, I would like to demonstrate here in concreto the transition to
macroscopic mechanics, by showing that a group of proper vibrations
of %igh order-number # (“ quantum number ') and of relatively small
order-number differences (“ quantum number differences 7} may
represent a “ particle ”, which is executing the *motion ”, expected
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F10. 1.—The first five proper vibrations of the Planck oscillator according to undulatory

mechanics.  Outside of the region —3<z< + 3 represented here, all five functions
approach the z-axis in monotonic fashion.

from the usual mechanics, i.e. oscillating with the frequency v, I

choose a number 431 (f.e. great compared with 1) and form the
following aggregate of proper vibrations :

Q A ﬂllb iy S A v, ﬂl _3_"_:
@ = T (G) e § (G nie 2 Hafa).

n=0

Thus the normalised proper vibrations (see above) are taken with
the coefficients

Ar
5 >
®) V2!
‘and this, as is easily seen,? results in the singling out of a relatively
small group in the neighbourhood of the n-valge given by
2

(6) n = -—Ag

1 2% fn ! has, as function of =, for large values of z, a single extremely high and relatively
very sharp maximum at n=z. By taking square roots and with z=42/2, we get the
series of numbers (5).
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The summation of the series (4) is made possible by the following
identity ! in z and s :

% gn _zt - _z
) B e TH() =T,

Thus
At dmivet + w?riv,t_:_g

(8) l)b - err‘fvot - -4—3

Now we take, as is provided for, the real part of the right-hand side
and after a short calculation obtain

A*? . '
(9) tp=ea " HE-AoosImd oo I:W"t + (4 sin 2zvt) . --fg— cos 2arv0t):l.
This is the final result, in which the first factor is our first interest.
It represents a relatively tall and narrow “hump”, of the form
of a “ Gaussian error-curve ”. which at a given moment lies in the
neighbourhood of the position

(10) z = A cos 2yl

The breadth of the hump is of the order of magpitude unity and
therefore very small compared with 4, by hypothesis. According to
(10), the hump oscillates under exactly the same law as would operate
in the usual mechanics for a particle having (1) as its energy function.
The amplitude in terms of z 15 4, and thus in terms of ¢ is

A [k
(11) a= Q; ”—;;‘;
Ordinary mechanics gives for the energy of a particle of mass m, which
oscillates with this amplitude and with frequency v,,

2
(12) 27726!121’0% = "Aé—th,

4.e. from (6) exactly nfv,, where n is the average quantum number of
the selected group. The  correspondence ” is thus complete in this
respect also.

The second factor in (9) is in general a function whose absolute value
is small compared with unity, and which varies very rapidly with =
and also t. It ploughs many deep and narrow furrows in the profile
of the first factor, and makes a wave group out of it, which is repre-
sented—schematically only—in Fig. 2. The z-scale of Fig. 2 is naturally
much smaller than that of Fig. 1; Fig. 2 requires to be magnified five
times before being directly compared with Fig. 1. A more exact
consideration of the second factor of (9) discloses the following inter-
esting details, which eannot be seen in Fig. 2, which only represents
one stage. The number and breadth of the * furrows ” or * wavelets ”
within the particle vary with the time. The wavelets are most
numerous and narrowest when passing through the centre =0 ; they
become completely smoothed out at the turning points z= + 4, because

1 Courant-Hilbert, loc. cit. eqn. {58).
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there, by (10), cos 27vgt = + 1 and thus sin 27 becomes equal to zero,
so that the second factor of (9) is absolutely independent of z. The
entire extension of the wave group (“ density of the particle ) remains,
however, always the same. The variability of the ¢ corrugation ” is
to be conceived as depending on the velocity, and, as such, is completely
intelligible from all general aspects of undulatory mechanics—but I
do not wish to discuss this further at present.

Our wave group always remains compact, and does not spread out
into larger regions as time goes on, as we were accustomed to make it
do, for example, in optics. It is admitted that this does not mean
much in one dimension, and that a hump on a string will behave quite
similarly. But it is easily seen that, by multiplying together two or
three expressions like (4), written in 2, in ¢, and in 2 respectively, we
can represent also the plane and the spatial oscillator respectively, 4.e.
a plane or spatial wave group which moves round a harmonic ellipse.
Also such a wave group will remain compact, in contrast, e.g., to a
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Fi1g. 2.—Oscillating wave group as the representation of a particle in wave mechanjcs.

wave packet in classical optics, which is- dissipated in the course of
time. The distinction may originate in the fact that our group is
built up out of separate discrete harmonic components, and not out of
a conttnuum of such.

I wish to mention, in conclusion, that a general additive constant,
C,let us say, which should be added to all the v,’s in (3), (and corresponds
to the ‘‘rest-energy ” of the particle) does not alter the essentials. It
only affects the square bracket in (9), adding 2#Ct thereto. Hence
the oscillations within the wave group become very much quicker with
respect to the time, while the oscillation of the group as a whole, given
by (10), and its ““ corrugation >, remain quite unafiected.

We can definitely foresee that, in a similar way, wave groups can
be constructed which move round highly quantised Kepler ellipses and
are the representation by wave mechanics of the hydrogen electron.
But the technical difficulties in the calculation are greater than in the
especially simple case which we have treated here.

1 We may point out, in passing, the interesting fact that the quantum levels of
the plane oscillator are integral, but for the spatial oscillator they again become * half-
integral . Similarly for the rotator. This half-integralness, which is spectroscopically
8o significant, is thus connected with the * oddness ** of the number of the dimensions
of space, '




